Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanosensors for water quality monitoring

Abstract

Nanomaterial-enabled sensors are being designed for high-efficiency, multiplex-functionality and high-flexibility sensing applications. Many existing nanosensors have the inherent capacity to achieve such goals; however, they require further development into consumer- and operator-friendly tools with the ability to detect analytes in previously inaccessible locations, as well as at a greater scale than heretofore possible. Here, I discuss how nanotechnology-enabled sensors have great, as yet unmet, promise to provide widespread and potentially low-cost monitoring of chemicals, microbes and other analytes in drinking water.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Representative optical, electrical, magnetic and mechanical nanosensor platforms.
Fig. 2: Internet of Things (IoT)-enabled water sensing both within the distribution system and at selected points within premise plumbing.

References

  1. Vitruvius. De Architectura (translated by Morgan, M. H.) (Harvard Univ. Press, Cambridge, MA, 1914).

  2. Progress on Drinking Water, Sanitation, and Hygiene: 2017 Update and SDG Baselines (WHO/UNICEF, 2017).

  3. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    CAS  Article  Google Scholar 

  4. Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

  5. Qu, X. L., Brame, J., Li, Q. L. & Alvarez, P. J. J. Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Acc. Chem. Res. 46, 834–843 (2013).

    CAS  Article  Google Scholar 

  6. Bhattacharyya, S. et al. Nanotechnology in the water industry, part 1: Occurrence and risks. J. Am. Water Works Assoc. 109, 30–37 (2017).

    Article  Google Scholar 

  7. Farahi, R. H., Passian, A., Tetard, L. & Thundat, T. Critical issues in sensor science to aid food and water safety. ACS Nano 6, 4548–4556 (2012).

    CAS  Article  Google Scholar 

  8. Standard Methods for the Examination of Water and Wastewater 22nd edn (American Public Health Association, American Water Works Association, Water Environment Federation, 2012).

  9. Rodrigues, S. M. et al. Nanotechnology for sustainable food production: Promising opportunities and scientific challenges. Environ. Sci. Nano 4, 767–781 (2017).

    CAS  Article  Google Scholar 

  10. Chandran, G. T., Li, X. W., Ogata, A. & Penner, R. M. Electrically transduced sensors based on nanomaterials (2012-2016). Anal. Chem. 89, 249–275 (2017).

    CAS  Article  Google Scholar 

  11. Farka, Z., Juriik, T., Kovaar, D., Trnkova, L. & Sklaadal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 117, 9973–10042 (2017).

    CAS  Article  Google Scholar 

  12. Vanegas, D. C., Gomes, C. L., Cavallaro, N. D., Giraldo-Escobar, D. & McLamore, E. S. Emerging biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food. Comp. Rev. Food Sci. Food Saf. 16, 1188–1205 (2017).

    CAS  Article  Google Scholar 

  13. Vikesland, P. J. & Wigginton, K. R. Nanomaterial enabled biosensors for pathogen monitoring — a review. Environ. Sci. Technol. 44, 3656–3669 (2010).

  14. Pol, R., Céspedes, F., Gabriel, D. & Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. Trends Anal. Chem. 95, 62–68 (2017).

    CAS  Article  Google Scholar 

  15. Sriram, G. et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. Trends Anal. Chem. 93, 212–227 (2017).

    CAS  Article  Google Scholar 

  16. Shelby, T., Sulthana, S., McAfee, J., Banerjee, T. & Santra, S. Foodborne pathogen screening using magneto-fluorescent nanosensor: Rapid detection of E. coli O157:H7. J. Vis. Exp. 127, e55821 (2017).

  17. van den Hurk, R. & Evoy, S. A review of membrane-based biosensors for pathogen detection. Sens. (Basel) 15, 14045–14078 (2015).

    Article  CAS  Google Scholar 

  18. Fadel, T. R. et al. Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens. 1, 207–216 (2016).

    CAS  Article  Google Scholar 

  19. Wang, C. & Yu, C. X. Detection of chemical pollutants in water using gold nanoparticles as sensors: A review. Rev. Anal. Chem. 32, 1–14 (2013).

    Article  CAS  Google Scholar 

  20. Banholzer, M. J., Millstone, J. E., Qin, L. D. & Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885–897 (2008).

    CAS  Article  Google Scholar 

  21. Ng, S.M., Koneswaran, M. & Narayanaswamy, R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 6, 21624–21661 (2016).

  22. Comparelli, R., Curri, M. L., Cozzoli, P. D. & Striccoli, M. in Nanotechnologies for the Life Sciences: Nanomaterials for Biosensors Vol. 8 (ed. Kumar, C. S. S. R.) 123–174 (Wiley-VCH, Weinheim, 2007).

  23. Wei, H., Abtahi, S. M. H. & Vikesland, P. J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. Nano 2, 120–135 (2015).

    CAS  Article  Google Scholar 

  24. Kneipp, K., Wang, Y., Dasari, R. R. & Feld, M. S. Approach to single-molecule detection using surface-enhanced resonance Raman-scattering (SERRS) — a study using Rhodamine 6G on colloidal silver. Appl. Spectrosc. 49, 780–784 (1995).

  25. Alvarez-Puebla, R. A. & Liz-Marzan, L. M. Traps and cages for universal SERS detection. Chem. Soc. Rev. 41, 43–51 (2012).

    CAS  Article  Google Scholar 

  26. Giannoukos, S., Brkic, B., Taylor, S., Marshall, A. & Verbeck, G. F. Chemical sniffing instrumentation for security applications. Chem. Rev. 116, 8146–8172 (2016).

    CAS  Article  Google Scholar 

  27. So, H. M. et al. Detection and titer estimation of Escherichia coli using aptamer‐functionalized single‐walled carbon‐nanotube field‐effect transistors. Small 4, 197–201 (2008).

    CAS  Article  Google Scholar 

  28. Peterson, J. et al. Detection of hepatitis C core antigen in the antibody negative ‘window’phase of hepatitis C infection. Vox Sang. 78, 80–85 (2000).

    CAS  Article  Google Scholar 

  29. Kudr, J. et al. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials 7, 243 (2017).

    Article  CAS  Google Scholar 

  30. Barroso, T. G. et al. Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection. Biosens. Bioelectron. 100, 259–265 (2018).

    CAS  Article  Google Scholar 

  31. Krishna, V. D., Wu, K., Perez, A. M. & Wang, J. P. Giant magnetoresistance-based biosensor for detection of influenza A virus. Front. Microbiol. 7, 400 (2016).

    Article  Google Scholar 

  32. de la Torre, T. Z. G. et al. Sensitive detection of spores using volume-amplified magnetic nanobeads. Small 8, 2174–2177 (2012).

    Article  CAS  Google Scholar 

  33. Chen, Y. et al. One-step detection of pathogens and viruses: Combining magnetic relaxation switching and magnetic separation. ACS Nano 9, 3184–3191 (2015).

    CAS  Article  Google Scholar 

  34. Kumar, A. A. et al. From the bench to the field in low-cost diagnostics: Two case studies. Angew. Chem. Int. Ed. 54, 5835–5852 (2015).

    Google Scholar 

  35. Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    CAS  Article  Google Scholar 

  36. Huck, P. M. in Conflict Resolution in Water Resources and Environmental Management (eds Hipel, K. W. et al.) Ch. 8, 145–158 (Springer, Cham, 2015).

  37. Westerhoff, P., Alvarez, P., Li, Q. L., Gardea-Torresdey, J. & Zimmerman, J. Overcoming implementation barriers for nanotechnology in drinking water treatment. Environ. Sci. Nano 3, 1241–1253 (2016).

    CAS  Article  Google Scholar 

  38. Crittenden, J., Trussell, R. R., Hand, D. W., Howe, K. J. & Tchobanoglous, G. MWH’s Water Treatment: Principles and Design 3rd edn (Wiley, Hoboken, 2012).

  39. Dai, D. et al. Factors shaping the human exposome in the built environment: Opportunities for engineering control. Environ. Sci. Technol. 51, 7759–7774 (2017).

    CAS  Article  Google Scholar 

  40. National Research Council. Drinking Water Distribution Systems: Assessing and Reducing Risks (The National Academies Press, Washington, DC, 2006).

  41. Flint Water Advisory Task Force — Final Report (Flint Water Advisory Task Force, 2016).

  42. Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comp. Sy. 20, 1645–1660 (2013).

    Article  Google Scholar 

  43. Wong, B. P. & Kerkez, B. Real-time environmental sensor data: An application to water quality using web services. Environ. Modell. Softw. 84, 505–517 (2016).

    Article  Google Scholar 

  44. Li, T., Xia, M., Chen, J. H., Zhao, Y. J. & de Silva, C. Automated water quality survey and evaluation using an IoT platform with mobile sensor nodes. Sensors 17, 1735 (2017).

  45. Akyildiz, I.F. & Jornet, J. M. The internet of nano-things. IEEE Wirel. Commun. 17, 58–63 (2010).

  46. Balasubramaniam, S. & Kangasharju, J. Realizing the internet of nano things: Challenges, solutions, and applications. Computer 46, 62–68 (2014).

    Article  Google Scholar 

  47. Nayyar, A., Puri, V. & Le, D.-N. Internet of nano things (IoNT): Next evolutionary step in nanotechnology. Nanosci. Nanotechnol. 7, 4–8 (2017).

    Google Scholar 

  48. Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

    CAS  Article  Google Scholar 

  49. Mazzocchi, R. A. Medical sensors — defining a pathway to commercialization. ACS Sens. 1, 1167–1170 (2016).

  50. Koivisto, A. J. et al. Quantitative material releases from products and articles containing manufactured nanomaterials: Towards a release library. NanoImpact 5, 119–132 (2017).

    Article  Google Scholar 

  51. National Research Council. Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater (The National Academies Press, Washington, DC, 2012).

  52. Ryu, H., Alum, A., Mena, K. D. & Abbaszadegan, M. Assessment of the risk of infection by Cryptosporidium and Giardia in non-potable reclaimed water. Water Sci. Technol. 55, 283–290 (2007).

    CAS  Article  Google Scholar 

  53. Pruden, A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ. Sci. Technol. 48, 5–14 (2014).

    CAS  Article  Google Scholar 

  54. Hollender, J., Schymanski, E. L., Singer, H. P. & Ferguson, P. L. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? Environ. Sci. Technol. 51, 11505–11512 (2017).

    CAS  Article  Google Scholar 

  55. Gluge, J., Wang, Z. Y., Bogdal, C., Scheringer, M. & Hungerbuhler, K. Global production, use, and emission volumes of short-chain chlorinated paraffins — a minimum scenario. Sci. Total Environ. 573, 1132–1146 (2016).

  56. Wang, Z. Y., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518 (2017).

    CAS  Article  Google Scholar 

  57. Bernhardt, E. S. et al. An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual. 39, 1954–1965 (2010).

    CAS  Article  Google Scholar 

  58. da Costa, J. P., Santos, P. S. M., Duarte, A. C. & Rocha-Santos, T. (Nano)plastics in the environment — sources, fates and effects. Sci. Total Environ. 566, 15–26 (2016).

  59. Stapleton, H. M. et al. Detection of organophosphate flame retardants in furniture foam and US house dust. Environ. Sci. Technol. 43, 7490–7495 (2009).

    CAS  Article  Google Scholar 

  60. Scheringer, M. Environmental chemistry and ecotoxicology: In greater demand than ever. Environ. Sci. Eur. 29, 3 (2017).

    Article  CAS  Google Scholar 

  61. Deshmukh, R. A., Joshi, K., Bhand, S. & Roy, U. Recent developments in detection and enumeration of waterborne bacteria: A retrospective minireview. Microbiologyopen 5, 901–922 (2016).

    Article  Google Scholar 

  62. Guerrini, L., Garcia-Rico, E., Pazos-Perez, N. & Alvarez-Puebla, R. A. Smelling, seeing, tasting-old senses for new sensing. ACS Nano 11, 5217–5222 (2017).

    CAS  Article  Google Scholar 

  63. Kim, S. J., Choi, S. J., Jang, J. S., Cho, H. J. & Kima, I. D. Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50, 1587–1596 (2017).

    CAS  Article  Google Scholar 

  64. Nakhleh, M. K. et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 11, 112–125 (2017).

    CAS  Article  Google Scholar 

  65. Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).

    CAS  Article  Google Scholar 

  66. Giles, B. Finding Growth and Differentiation in Small-scale Water Treatment Markets (Lux Research, 2013).

  67. Schmidt, W. P. & Cairncross, S. Household water treatment in poor populations: Is there enough evidence for scaling up now? Environ. Sci. Technol. 43, 986–992 (2009).

    CAS  Article  Google Scholar 

  68. Fewtrell, L. et al. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. Lancet Infect. Dis. 5, 42–52 (2005).

    Article  Google Scholar 

  69. Pitta, D. A., Pitta, D., Guesalaga, R. & Marshall, P. The quest for the fortune at the bottom of the pyramid: Potential and challenges. J. Consum. Mark. 25, 393–401 (2008).

    Article  Google Scholar 

  70. McLeod, E., Wei, Q. & Ozcan, A. Democratization of nanoscale imaging and sensing tools using photonics. Anal. Chem. 87, 6434–6445 (2015).

    CAS  Article  Google Scholar 

  71. Nel, A. et al. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 46, 607–621 (2013).

    CAS  Article  Google Scholar 

  72. Garner, K. L. & Keller, A. A. Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. J. Nanopart. Res. 16, 2503 (2014).

    Article  Google Scholar 

  73. Falinski, M. M. et al. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotech. https://doi.org/10.1038/s41565-08-0120-4 (2018).

  74. Daniel, W. L., Han, M. S., Lee, J.-S. & Mirkin, C. A. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc. 131, 6362–6363 (2009).

    CAS  Article  Google Scholar 

  75. Liu, J. & Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 118, 96–100 (2006).

    Article  Google Scholar 

  76. Beqa, L. et al. Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl. Mater. Interfaces 3, 668–673 (2011).

    CAS  Article  Google Scholar 

  77. Zhang, Z., Chen, Z., Qu, C. & Chen, L. Highly sensitive visual detection of copper ions based on the shape-dependent lspr spectroscopy of gold nanorods. Langmuir 30, 3625–3630 (2014).

    CAS  Article  Google Scholar 

  78. Vilela, D., González, M. C. & Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal. Chim. Acta 751, 24–43 (2012).

    CAS  Article  Google Scholar 

  79. Algarra, M. et al. Thiolated DAB dendrimers and CdSe quantum dot nanocomposites for Cd(II) or Pb(II) sensing. Talanta 88, 403–407 (2012).

    CAS  Article  Google Scholar 

  80. Li, M., Zhou, X., Guo, S. & Wu, N. Detection of lead(II) with a “turn-on” fluorescent biosensor based on energy transfer from CdS/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 43, 69–74 (2013).

  81. Luan, W. et al. Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence probe for lead(II). J. Nanopart. Res. 14, 1–8 (2012).

    Article  CAS  Google Scholar 

  82. Sung, T.-W. & Lo, Y.-L. Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens. Actuators B 165, 119–125 (2012).

  83. Chao, M. R., Chang, Y. Z. & Chen, J. L. Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection. Biosens. Bioelectron. 42, 397–402 (2013).

    CAS  Article  Google Scholar 

  84. Gan, T. T. et al. Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag(+). Spectrochim. Acta A 99, 62–68 (2012).

  85. Gui, R. et al. A near-infrared-emitting CdTe/CdS core/shell quantum dots-based off-on fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta 94, 257–262 (2012).

    CAS  Article  Google Scholar 

  86. Liu, X.-Q. et al. Directional surface plasmon-coupled emission of CdTe quantum dots and its application in Hg(II) sensing. Anal. Meth. 4, 3956 (2012).

    CAS  Article  Google Scholar 

  87. Wu, H., Liang, J. & Han, H. A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim. Acta 161, 81–86 (2007).

    Article  CAS  Google Scholar 

  88. Wang, Y. Q., Liu, Y., He, X. W., Li, W. Y. & Zhang, Y. K. Highly sensitive synchronous fluorescence determination of mercury (II) based on the denatured ovalbumin coated CdTe QDs. Talanta 99, 69–74 (2012).

    CAS  Article  Google Scholar 

  89. Koneswaran, M. & Narayanaswamy, R. L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens. Actuators B 139, 104–109 (2009).

  90. Ke, J., Li, X., Shi, Y., Zhao, Q. & Jiang, X. A facile and highly sensitive probe for Hg(II) based on metal-induced aggregation of ZnSe/ZnS quantum dots. Nanoscale 4, 4996–5001 (2012).

    CAS  Article  Google Scholar 

  91. Zhang, C. et al. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens. Bioelectron. 55, 216–219 (2014).

    CAS  Article  Google Scholar 

  92. Ackermann, K. R., Henkel, T. & Popp, J. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem A 8, 2665–2670 (2007).

  93. Hadjigeorgiou, K., Kastanos, E. & Pitris, C. Multi-bacteria multi-antibiotic testing using surface enhanced raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis. in Clinical and Biomedical Spectroscopy and Imaging III (eds Deckert, V & Ramanujam, N.) vol. 8798, paper 87980L (2013).

  94. Halvorson, R. A. & Vikesland, P. J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44, 7749–7755 (2010).

  95. Jarvis, R. M. & Goodacre, R. Characterisation and identification of bacteria using SERS. Chem. Soc. Rev. 37, 931–936 (2008).

    CAS  Article  Google Scholar 

  96. Zhou, H. et al. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 86, 1525–1533 (2014).

  97. Muratova, I. S., Mikhelson, K. N., Ermolenko, Y. E., Offenhausser, A. & Mourzina, Y. Chemiresistors based on ultrathin gold nanowires for sensing halides, pyridine and dopamine. Sens. Actuators B 232, 420–427 (2016).

  98. Cho, S. Y. et al. High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 16, 4508–4515 (2016).

    CAS  Article  Google Scholar 

  99. Kim, J. H., Katoch, A., Kim, S. H. & Kim, S. S. Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core–shell nanowires. ACS Appl. Mater. Interfaces 7, 15351–15358 (2015).

  100. Fennell, J. F. et al. Nanowire chemical/biological sensors: Status and a roadmap for the future. Angew. Chem. Int. Ed. 55, 1266–1281 (2016).

    CAS  Article  Google Scholar 

  101. Kindra, L. R. et al. Lithographically patterned pedot nanowires for the detection of iron(III) with nanomolar sensitivity. Anal. Chem. 87, 11492–11500 (2015).

    CAS  Article  Google Scholar 

  102. Kwon, O. S., Park, S. J., Yoon, H. & Jang, J. Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. Chem. Commun. 48, 10526–10528 (2012).

    CAS  Article  Google Scholar 

  103. Chen, S. & Sun, G. High sensitivity ammonia sensor using a hierarchical polyaniline/poly(ethylene-co-glycidyl methacrylate) nanofibrous composite membrane. ACS Appl. Mater. Interfaces 5, 6473–6477 (2013).

    CAS  Article  Google Scholar 

  104. Gao, A. R. et al. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 12, 5262–5268 (2012).

    CAS  Article  Google Scholar 

  105. Shen, F. X. et al. Rapid flu diagnosis using silicon nanowire sensor. Nano Lett. 12, 3722–3730 (2012).

    CAS  Article  Google Scholar 

  106. Jiang, S., Cheng, R., Ng, R., Huang, Y. & Duan, X. F. Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. Nano Res. 8, 257–262 (2015).

  107. Sarkar, D. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014).

    CAS  Article  Google Scholar 

  108. Knopfmacher, O. et al. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, 2954 (2014).

    Article  CAS  Google Scholar 

  109. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  CAS  Google Scholar 

  110. Bandodkar, A. J., Jeerapan, I., You, J. M., Nunez-Flores, R. & Wang, J. Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: Combining intrinsic and design-induced stretchability. Nano Lett. 16, 721–727 (2016).

    CAS  Article  Google Scholar 

  111. Gou, P. P., Kraut, N. D., Feigel, I. M. & Star, A. Rigid versus flexible ligands on carbon nanotubes for the enhanced sensitivity of cobalt ions. Macromolecules 46, 1376–1383 (2013).

    CAS  Article  Google Scholar 

  112. Yu, G., Wu, W., Zhao, Q., Wei, X. & Lu, Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens. Bioelectron. 68, 288–294 (2015).

    CAS  Article  Google Scholar 

  113. Stortini, A. M., Moretto, L. M., Mardegan, A., Ongaro, M. & Ugo, P. Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sens. Actuators B 207, 186–192 (2015).

  114. Li, X. G., Zhang, J. L. & Huang, M. R. Chemical response of nanocomposite membranes of electroactive polydiaminonaphthalene nanoparticles to heavy metal ions. J. Phys. Chem. C. 118, 11990–11999 (2014).

    CAS  Article  Google Scholar 

  115. Yang, Y., Asiri, A. M., Du, D. & Lin, Y. Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139, 3055–3060 (2014).

  116. Wu, K. et al. Portable GMR handheld platform for the detection of influenza A virus. ACS Sens. 2, 1594–1601 (2017).

    CAS  Article  Google Scholar 

  117. Banerjee, T. et al. Multiparametric magneto-fluorescent nanosensors for the ultrasensitive detection of Escherichia coli O157:H7. ACS Infect. Dis. 2, 667–673 (2016).

    CAS  Article  Google Scholar 

  118. Wang, J. et al. Facile synthesis of au-coated magnetic nanoparticles and their application in bacteria detection via a sers method. ACS Appl. Mater. Interfaces 8, 19958–19967 (2016).

    CAS  Article  Google Scholar 

  119. Yang, Y., Asiri, A. M., Du, D. & Lin, Y. Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139, 3055–3060 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author thanks his Virginia Tech colleagues L. Marr, M. Edwards and H. Wei for providing useful feedback on the manuscript, and thanks the US National Science Foundation (CBET-1705653, OISE-1545756 and CBET-1133746) and the Virginia Tech ICTAS Exposome Center for financial support. In addition, he thanks the McNeill laboratory at ETH-Zurich for providing a sabbatical home during which this Perspective was produced.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Vikesland.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vikesland, P.J. Nanosensors for water quality monitoring. Nature Nanotech 13, 651–660 (2018). https://doi.org/10.1038/s41565-018-0209-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0209-9

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research