Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superconducting gatemon qubit based on a proximitized two-dimensional electron gas


The coherent tunnelling of Cooper pairs across Josephson junctions (JJs) generates a nonlinear inductance that is used extensively in quantum information processors based on superconducting circuits, from setting qubit transition frequencies1 and interqubit coupling strengths2 to the gain of parametric amplifiers3 for quantum-limited readout. The inductance is either set by tailoring the metal oxide dimensions of single JJs, or magnetically tuned by parallelizing multiple JJs in superconducting quantum interference devices with local current-biased flux lines. JJs based on superconductor–semiconductor hybrids represent a tantalizing all-electric alternative. The gatemon is a recently developed transmon variant that employs locally gated nanowire superconductor–semiconductor JJs for qubit control4,5. Here we go beyond proof-of-concept and demonstrate that semiconducting channels etched from a wafer-scale two-dimensional electron gas (2DEG) are a suitable platform for building a scalable gatemon-based quantum computer. We show that 2DEG gatemons meet the requirements6 by performing voltage-controlled single qubit rotations and two-qubit swap operations. We measure qubit coherence times up to ~2 μs, limited by dielectric loss in the 2DEG substrate.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 2DEG gatemon.
Fig. 2: Coherent qubit manipulation.
Fig. 3: Coherence times.
Fig. 4: Coherent two-qubit interaction.


  1. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A. 76, 042319 (2007).

    Article  Google Scholar 

  2. Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).

    Article  Google Scholar 

  3. Castellanos-Beltran, M. A. & Lehnert, K. W. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator. Appl. Phys. Lett. 91, 083509 (2007).

    Article  Google Scholar 

  4. Larsen, T. W. et al. A semiconductor nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article  CAS  Google Scholar 

  5. de Lange, G. et al. Realization of microwave quantum circuits using hybrid superconducting–semiconducting nanowire Josephson elements. Phys. Rev. Lett. 115, 127002 (2015).

    Article  Google Scholar 

  6. Vincenzo, D. The physical implementation of quantum computation. Preprint at (2000).

  7. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    Article  CAS  Google Scholar 

  8. Sheldon, S., Magesan, E., Chow, J. M. & Gambetta, J. M. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A. 93, 060302 (2016).

    Article  Google Scholar 

  9. Hutchings, M. D. et al. Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl 8, 044003 (2017).

    Article  Google Scholar 

  10. Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    Article  CAS  Google Scholar 

  11. Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018).

    Article  CAS  Google Scholar 

  12. Rosenberg, D. et al. 3D integrated superconducting qubits. Quantum Inf. 3, 42 (2017).

    Article  Google Scholar 

  13. Kjaergaard, M. et al. Transparent semiconductor–superconductor interface and induced gap in an epitaxial heterostructure Josephson junction. Phys. Rev. Appl. 7, 034029 (2017).

    Article  Google Scholar 

  14. Luthi, F. et al. Evolution of nanowire transmons and their quantum coherence in magnetic field. Phys. Rev. Lett. 120, 100502 (2018).

    Article  CAS  Google Scholar 

  15. Casparis, L. et al. Gatemon benchmarking and two-qubit operations. Phys. Rev. Lett. 116, 150505 (2016).

    Article  CAS  Google Scholar 

  16. Shabani, J. et al. Two-dimensional epitaxial superconductor–semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

    Article  Google Scholar 

  17. Kringhøj, A. et al. Anharmonicity of a superconducting qubit with a few-mode Josephson junction. Phys. Rev. B 97, 060508 (2018).

    Article  Google Scholar 

  18. Abay, S. High critical-current superconductor-InAs nanowire–superconductor junctions. Nano. Lett. 12, 5622 (2012).

    Article  CAS  Google Scholar 

  19. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  CAS  Google Scholar 

  20. O’Malley, P. J. J. et al. Qubit metrology of ultralow phase noise using randomized benchmarking. Phys. Rev. Appl. 3, 044009 (2015).

    Article  Google Scholar 

  21. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    Article  CAS  Google Scholar 

  22. Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

    Article  CAS  Google Scholar 

  23. Krupka, J., Hartnett, J. G. & Piersa, M. Permittivity and microwave absorption of semi-insulating InP at microwave frequencies. Appl. Phys. Lett. 98, 112112 (2011).

    Article  Google Scholar 

  24. Frey, T. S. Interaction between Quantum Dots and Superconducting Microwave Resonators. PhD thesis, ETH Zurich (2013).

  25. Bruno, A. et al. Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl. Phys. Lett. 106, 182601 (2015).

    Article  Google Scholar 

  26. Dial, O. E. et al. Charge noise spectroscopy using coherent exchange oscillations in a singlet–triplet qubit. Phys. Rev. Lett. 110, 146804 (2013).

    Article  CAS  Google Scholar 

  27. Rol, M. A. et al. Restless tuneup of high-fidelity qubit gates. Phys. Rev. Appl. 7, 041001 (2017).

    Article  Google Scholar 

  28. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article  CAS  Google Scholar 

  29. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article  CAS  Google Scholar 

  30. Casparis, L. et al. Voltage-controlled superconducting quantum bus. Preprint at (2018).

  31. Cassidy, M. C. et al. Demonstration of an a.c. Josephson junction laser. Science 355, 939–942 (2017).

    Article  CAS  Google Scholar 

  32. Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    Article  Google Scholar 

  33. Ward, D. R., Savage, D. E., Lagally, M. G., Coppersmith, S. N. & Eriksson, M. A. Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing. Appl. Phys. Lett. 102, 213107 (2013).

    Article  Google Scholar 

  34. Al-Taie, H. et al. Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices. Appl. Phys. Lett. 102, 243102 (2013).

    Article  Google Scholar 

  35. Hornibrook, J. M. et al. Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3, 024010 (2015).

    Article  CAS  Google Scholar 

  36. Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article  CAS  Google Scholar 

Download references


We acknowledge helpful discussions with A. C. C. Drachmann, H. J. Suominen, E. C. T. O’Farrell, A. Fornieri, A. M. Whiticar and F. Nichele. This work was supported by Microsoft Project Q, the US Army Research Office, the Innovation Fund Denmark and the Danish National Research Foundation. C.M.M. acknowledges support from the Villum Foundation. M.R.C. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 750777, and EPSRC (EP/L020963/1). M.K. acknowledges support from the Carlsberg Foundation. N.J.P. acknowledges support from the Swiss National Science Foundation and NCCR QSIT. The travelling wave parametric amplifier used in this experiment was provided by MIT Lincoln Laboratory and Irfan Siddiqi Quantum Consulting (ISQC), LLC, via sponsorship from the US Government.

Author information

Authors and Affiliations



T.W., C.T., S.G., G.C.G. and M.J.M. grew the proximitized 2DEG. M.K., L.C., C.M.M. and K.D.P designed the experiment. L.C., M.R.C., A.K., N.J.P., T.W.L., and K.D.P. prepared the experimental set-up. L.C. and M.R.C. fabricated the devices and performed the experiment. L.C., M.R.C., M.K., A.K., T.W.L., F.K., C.M.M. and K.D.P. analysed the data and prepared the manuscript.

Corresponding author

Correspondence to Karl D. Petersson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casparis, L., Connolly, M.R., Kjaergaard, M. et al. Superconducting gatemon qubit based on a proximitized two-dimensional electron gas. Nature Nanotech 13, 915–919 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research