Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Emerging opportunities for nanotechnology to enhance water security

Abstract

No other resource is as necessary for life as water, and providing it universally in a safe, reliable and affordable manner is one of the greatest challenges of the twenty-first century. Here, we consider new opportunities and approaches for the application of nanotechnology to enhance the efficiency and affordability of water treatment and wastewater reuse. Potential development and implementation barriers are discussed along with research needs to overcome them and enhance water security.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Water treatment priorities and processes that can be enhanced by nanotechnology.
Fig. 2: Nanotechnology-enabled membranes for water treatment.
Fig. 3: Multifunctional nanoparticles.
Fig. 4: Direct solar-driven vaporization and distillation processes.

Similar content being viewed by others

References

  1. Chen, B. et al. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 613–614, 931–943 (2018).

    Google Scholar 

  2. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    CAS  Google Scholar 

  3. Coping with Water Scarcity - Challenge of the Twenty-First Century (UN Water, 2007).

  4. Bates, B., Kundzewicz, Z., Wu, S. & Palutikof, J. (eds) Climate Change and Water Technical Paper of the Intergovernmental Panel on Climate Change (IPCC, 2008).

  5. Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 6223 (2105).

    Google Scholar 

  6. UNICEF & WHO. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment (UNICEF, 2015).

  7. Prüss‐Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene in low‐ and middle‐income settings: a retrospective analysis of data from 145 countries. Trop. Med. Int. Health 19, 894–905 (2014).

    Google Scholar 

  8. Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).

    Google Scholar 

  9. Luo, Y. et al. Proliferation of multidrug-resistant New Delhi metallo-β-lactamase genes in municipal wastewater treatment plants in northern China. Environ. Sci. Technol. Lett. 1, 26–30 (2014).

    CAS  Google Scholar 

  10. O’Neill. J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (The Review on Antimicrobial Resistance, 2014).

  11. Hutton, G. & Haller, L. Evaluation of the Costs and Benefits of Water and Sanitation Improvements at the Global Level (WHO, 2004).

  12. Van Minh, H. & Hung, N. V. Economic aspects of sanitation in developing countries. Environ. Health Insights 5, S8199 (2011).

    Google Scholar 

  13. Bigas, H. Water Security and the Global Water Agenda: A UN-water Analytical Brief (United Nations University - Institute for Water, Environment and Health, 2013).

  14. Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).

    CAS  Google Scholar 

  15. Dong, S. Y. et al. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv. 5, 14610–14630 (2015).

    CAS  Google Scholar 

  16. Kumar, S. G. & Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241 (2011).

    CAS  Google Scholar 

  17. Zhang, D. S. et al. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J. Mater. Chem. 22, 14696–14704 (2012).

    CAS  Google Scholar 

  18. Wang, H. et al. In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. J. Mater. Chem. A 4, 4908–4919 (2016).

    CAS  Google Scholar 

  19. Yang, Y. & Hoffmann, M. R. Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment. Environ. Sci. Technol. 50, 11888–11894 (2016).

    CAS  Google Scholar 

  20. Liu, S. et al. Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane. Electrochim. Acta 253, 357–367 (2017).

    CAS  Google Scholar 

  21. Radjenovic, J. & Sedlak, D. L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49, 11292–11302 (2015).

    CAS  Google Scholar 

  22. Yavuz, C. T. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314, 964–967 (2006).

    Google Scholar 

  23. Farrell, J. W. et al. Arsenic removal by nanoscale magnetite in Guanajuato, Mexico. Environ. Eng. Sci. 31, 393–402 (2014).

    CAS  Google Scholar 

  24. Cooper, A. M., Hristovski, K. D., Moller, T., Westerhoff, P. & Sylvester, P. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons. J. Hazard. Mater. 183, 381–388 (2010).

    CAS  Google Scholar 

  25. Sylvester, P., Westerhoff, P., Mooller, T., Badruzzaman, M. & Boyd, O. A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environ. Eng. Sci. 24, 104–112 (2007).

    CAS  Google Scholar 

  26. Alsbaiee, A. et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529, 190–194 (2015).

    Google Scholar 

  27. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Google Scholar 

  28. Lee, J. et al. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ. Sci. Technol. 43, 6604–6610 (2009).

    CAS  Google Scholar 

  29. Lee, J. et al. C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst. Environ. Sci. Technol. 44, 9488–9495 (2010).

    CAS  Google Scholar 

  30. Lee, C.-G. et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52, 4285–4293 (2018).

    CAS  Google Scholar 

  31. Wang, F. Hollow anatase TiO2 octahedrons with exposed high-index {102} facets for improved dye-sensitized photoredox catalysis activity. Inorg. Chem. 57, 4550–4555 (2018).

    CAS  Google Scholar 

  32. Liu, S., Yu, J. & Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc. 132, 11914–11916 (2010).

    CAS  Google Scholar 

  33. Zhang, R. et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 5888–5924 (2016).

    CAS  Google Scholar 

  34. Boo, C., Lee, J. & Elimelech, M. Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications. Environ. Sci. Technol. 50, 8112–8119 (2016).

    CAS  Google Scholar 

  35. Yamani, J. S., Lounsbury, A. W. & Zimmerman, J. B. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex. Water Res. 88, 889–896 (2016).

    CAS  Google Scholar 

  36. Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    CAS  Google Scholar 

  37. Zodrow, K. et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 43, 715–723 (2009).

    CAS  Google Scholar 

  38. Tang, W., He, D., Zhang, C. & Waite, T. D. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Res. 121, 302–310 (2017).

    CAS  Google Scholar 

  39. Yu, C. Modulating particle adhesion with micro-patterned surfaces. ACS Appl. Mater. Inter. 6, 8199–8207 (2014).

    CAS  Google Scholar 

  40. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Google Scholar 

  41. Liu, C., Lee, J., Small, C., Ma, J. & Elimelech, M. Comparison of organic fouling resistance of thin-film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes. J. Memb. Sci. 544, 135–142 (2017).

    CAS  Google Scholar 

  42. Ben-Sasson, M., Lu, X., Nejati, S., Jaramillo, H. & Elimelech, M. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 388, 1–8 (2016).

    CAS  Google Scholar 

  43. Ben-Sasson, M. et al. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 62, 260–270 (2014).

    CAS  Google Scholar 

  44. Lu, X. et al. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl Acad. Sci. USA 114, E9793–E9801 (2017).

    CAS  Google Scholar 

  45. Perreault, F., de Faria, A. F., Nejati, S. & Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 9, 7226–7236 (2015).

    CAS  Google Scholar 

  46. Perreault, F. et al. Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environ. Sci. Technol. 50, 5840–5848 (2016).

    CAS  Google Scholar 

  47. Faria, A. F. et al. Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. J. Memb. Sci. 525, 146–156 (2017).

    CAS  Google Scholar 

  48. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  49. Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).

    CAS  Google Scholar 

  50. Brame, J., Long, M. C., Li, Q. L. & Alvarez, P. Trading oxidation power for efficiency: Differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Res. 60, 259–266 (2014).

    CAS  Google Scholar 

  51. Chong, M. N., Jin, B., Chow, C. W. K. & Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 44, 2997–3027 (2010).

    CAS  Google Scholar 

  52. Lee, H. & Choi, W. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environ. Sci. Technol. 36, 3872–3878 (2002).

    CAS  Google Scholar 

  53. Tan, T. T. Y., Beydoun, D. & Amal, R. Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: Importance of optimum ratio of reactants on TiO2 surface. J. Mol. Catal. A Chem. 202, 73–85 (2003).

    CAS  Google Scholar 

  54. Chenthamarakshan, C. R. & Rajeshwar, K. Heterogeneous photocatalytic reduction of Cr(VI) in UV-irradiated titania suspensions: Effect of protons, ammonium ions, and other interfacial aspects. Langmuir 16, 2715–2721 (2000).

    CAS  Google Scholar 

  55. Doudrick, K., Monzon, O., Mangonon, A., Hristovski, K. & Westerhoff, P. Nitrate reduction in water wsing commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100). J. Environ. Eng. 138, 852–861 (2012).

    CAS  Google Scholar 

  56. Li, L. L. et al. Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). Environ. Sci. Nano 4, 1817–1826 (2017).

    CAS  Google Scholar 

  57. Jabbari, V., Veleta, J. M., Zarei-Chaleshtori, M., Gardea-Torresdey, J. & Villagran, D. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem. Eng. J. 304, 774–783 (2016).

    CAS  Google Scholar 

  58. Fu, Y., Wang, J. Y., Liu, Q. X. & Zeng, H. B. Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon 77, 710–721 (2014).

    CAS  Google Scholar 

  59. Su, H., Ye, Z. B., Hmidi, N. & Subramanian, R. Carbon nanosphere-iron oxide nanocomposites as high-capacity adsorbents for arsenic removal. RSC Adv. 7, 36138–36148 (2017).

    CAS  Google Scholar 

  60. Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A. & Solanki, P. R. Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 7, 7672 (2017).

    Google Scholar 

  61. Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    CAS  Google Scholar 

  62. Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

    CAS  Google Scholar 

  63. Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    CAS  Google Scholar 

  64. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

    CAS  Google Scholar 

  65. Kashyap, V. et al. A flexible anti-clogging graphite film for scalable solar desalination by heat localization. J. Mater. Chem. A 5, 15227–15234 (2017).

    CAS  Google Scholar 

  66. Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    CAS  Google Scholar 

  67. Hua, M. et al. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211, 317–331 (2012).

    Google Scholar 

  68. Torrent, J., Barron, V. & Schwertmann, U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54, 1007–1012 (1990).

    Google Scholar 

  69. Waychunas, G. A., Kim, C. S. & Banfield, J. F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7, 409–433 (2005).

    CAS  Google Scholar 

  70. Lounsbury, A. W., Yamani, J. S., Johnston, C. P., Larese-Casanova, P. & Zimmerman, J. B. The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity. J. Hazard. Mater. 310, 117–124 (2016).

    CAS  Google Scholar 

  71. Chen, X. B., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    CAS  Google Scholar 

  72. Swearer, D. F. et al. Heterometallic antenna-reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Engineering Research Center on Nanotechnology-Enabled Water Treatment (EEC-1449500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. J. Alvarez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, P.J.J., Chan, C.K., Elimelech, M. et al. Emerging opportunities for nanotechnology to enhance water security. Nature Nanotech 13, 634–641 (2018). https://doi.org/10.1038/s41565-018-0203-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0203-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing