Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Construction of integrated gene logic-chip

Abstract

In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembly and activity of the T7-chip.
Fig. 2: Properties and rational design of the gene nanochip activity.
Fig. 3: A single nanochip can express a defined gene in a (w/o) droplet
Fig. 4: Integration and reprogramming of the logic gate on the nanochip.
Fig. 5: Nanochip-based genetic circuit autonomously responds to the small RNA (miRNA) profile of a (w/o) droplet.

Similar content being viewed by others

References

  1. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  Google Scholar 

  2. Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Article  Google Scholar 

  3. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  Google Scholar 

  4. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  5. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  6. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344, 65–69 (2014).

    Article  CAS  Google Scholar 

  7. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  Google Scholar 

  8. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  9. Simmel, F. C. DNA-based assembly lines and nanofactories. Curr. Opin. Biotechnol. 23, 516–521 (2012).

    Article  CAS  Google Scholar 

  10. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  Google Scholar 

  11. Chatterjee, G., Dalchau, N., Muscat, R. A., Phillips, A. & Seelig, G. A spatially localized architecture for fast and modular DNA computing. Nat. Nanotech. 12, 920–927 (2017).

    Article  CAS  Google Scholar 

  12. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotech. 4, 249–254 (2009).

    Article  CAS  Google Scholar 

  13. Fu, J., Liu, M., Liu, Y., Woodbury, N. W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012).

    Article  CAS  Google Scholar 

  14. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotech. 9, 531–536 (2014).

    Article  CAS  Google Scholar 

  15. Zhao, Z. et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 7, 10619 (2016).

    Article  CAS  Google Scholar 

  16. Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nat. Nanotech. 6, 166–169 (2011).

    Article  CAS  Google Scholar 

  17. Sacca, B. et al. Orthogonal protein decoration of DNA origami. Angew. Chem. Int. Ed. 49, 9378–9383 (2010).

    Article  CAS  Google Scholar 

  18. Zhang, Y., Tsitkov, S. & Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade. Nat. Commun. 7, 13982 (2016).

    Article  CAS  Google Scholar 

  19. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  20. Miyazono, Y., Hayashi, M., Karagiannis, P., Harada, Y. & Tadakuma, H. Strain through the neck linker ensures processive runs: a DNA–kinesin hybrid nanomachine study. EMBO J. 29, 93–106 (2010).

    Article  CAS  Google Scholar 

  21. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  Google Scholar 

  22. Nakamura, K. et al. Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform. Sci. Rep. 6, 22259 (2016).

    Article  CAS  Google Scholar 

  23. Yao, C., Sasaki, H. M., Ueda, T., Tomari, Y. & Tadakuma, H. Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol. Cell 59, 125–132 (2015).

    Article  CAS  Google Scholar 

  24. Yoshimura, Y. & Fujimoto, K. Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10, 3227–3230 (2008).

    Article  CAS  Google Scholar 

  25. Zhou, Z. P. et al. Single molecule imaging of the trans-translation entry process via anchoring of the tagged ribosome. J. Biochem. 149, 609–618 (2010).

    Article  Google Scholar 

  26. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  27. Praetorius, F. & Dietz, H. Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355, eaam5488 (2017).

    Article  Google Scholar 

  28. Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotech. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  29. Williams, B. A., Lund, K., Liu, Y., Yan, H. & Chaput, J. C. Self-assembled peptide nanoarrays: an approach to studying protein–protein interactions. Angew. Chem. Int. Ed. 46, 3051–3054 (2007).

    Article  CAS  Google Scholar 

  30. Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).

    Article  CAS  Google Scholar 

  31. Bentele, K., Saffert, P., Rauscher, R., Ignatova, Z. & Bluthgen, N. Efficient translation initiation dictates codon usage at gene start. Mol. Syst. Biol. 9, 675 (2013).

    Article  Google Scholar 

  32. Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    Article  CAS  Google Scholar 

  33. Torisawa, T. et al. Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat. Cell Biol. 16, 1118–1124 (2014).

    Article  CAS  Google Scholar 

  34. Haneoka, M. et al. Microfluidic active sorting of DNA molecules labeled with single quantum dots using flow switching by a hydrogel sol–gel transition. Sens. Actuat. B 159, 314–320 (2011).

    Article  CAS  Google Scholar 

  35. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    Article  CAS  Google Scholar 

  36. Okano, T., Matsuura, T., Kazuta, Y., Suzuki, H. & Yomo, T. Cell-free protein synthesis from a single copy of DNA in a glass microchamber. Lab Chip 12, 2704–2711 (2012).

    Article  CAS  Google Scholar 

  37. Thirumalai, D. & Ha B. Y. in Theoretical and Mathematical Models in Polymer Research (ed. Grosberg, A.) 1–35 (Academia, New York, 1988).

  38. Schuler, B., Lipman, E. A., Steinbach, P. J., Kumke, M. & Eaton, W. A. Polyproline and the ‘spectroscopic ruler’ revisited with single-molecule fluorescence. Proc. Natl Acad. Sci. USA 102, 2754–2759 (2005).

    Article  CAS  Google Scholar 

  39. Kitano, H., Funahashi, A., Matsuoka, Y. & Oda, K. Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 23, 961–966 (2005).

    Article  CAS  Google Scholar 

  40. Dörr, A., Keller, R., Zell, A. & Drager, A. SBMLsimulator: a Java tool for model simulation and parameter estimation in systems biology. Computation 2, 246–257 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank RIBM for AFM imaging, T. Sakurai, H. Okada and K. Nakamura (The University of Tokyo) for help with construction of the microfluidics system, and Y. Tomari and members of the Tomari Laboratory for providing comments on the miRNA studies and on this manuscript. The authors also thank Y. Hatano (Osaka University) and M. Hagiya (The University of Tokyo) for their comments on logic circuits, and I. Kawamata (Tohoku University) for comments on the kinetically based simulation of logic circuit. This work was partially supported by Grants-in-Aid for Scientific Research on Innovative Areas (‘Molecular Robotics’ to H.T. and M.E., nos. 15H00798 and 24104002; ‘Non-coding RNA Neo-taxonomy’ to H.T., no. 26113007), a Grant-in-Aid for Young Scientists (A), a Grant-in-Aid for Scientific Research (B) and a Grant-in-Aid for Challenging Exploratory Research (to H.T., nos. 24687018, 16KT0068 and 15K14485), Grants-in-Aid for Scientific Research (S) (to Y.H., no. 26220602) and (A) (to S.S., no. 16H02349), Grants-in-Aid for Young Scientists (B) (to R.I., no. 15K18668) from the Japan Ministry of Education, Culture, Sports, Science and Technology, Research Fellowships for Young Scientists (to T.M., no. 15J08491), Core-to-Core Program, A, Advanced Research Networks (Phototheranostics) (to R.I.) from the Japan Society for the Promotion of Science, CREST (to Y.H., no. JPMJCR1333), the Centre of Innovation (COI) Program (to T.F.) from the Japan Science and Technology Agency, the Cooperative Research Program of the Institute for Protein Research, Osaka University (CRa-18-01, to H.T and M.E.), the Asahi Glass Foundation, Futaba Electronics Memorial Foundation, and Hamaguchi Foundation for the Advancement of Biochemistry (to H.T.), and Futaba Electronics Memorial Foundation Scholarship (to T.M.).

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived, designed and supervised the study. T.M. performed the biochemical and microfluidics experiments and analysed the data. H.T. performed the AFM imaging with the help of RIBM (Tsukuba, Japan). R.I., T.F., S.S., A.I., D.H.Y, and T.S. constructed the microfluidics system. T.U. supervised H.T. and T.M. All authors discussed the results. H.T., H.S., T.M. and M.E. wrote the manuscript.

Corresponding authors

Correspondence to Masayuki Endo, Hiroshi Sugiyama, Takuya Ueda or Hisashi Tadakuma.

Ethics declarations

Competing interests

The authors have a pending patent application on the programmable gene expression method in this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–30, Supplementary Tables 1–4, Supplementary Notes and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masubuchi, T., Endo, M., Iizuka, R. et al. Construction of integrated gene logic-chip. Nature Nanotech 13, 933–940 (2018). https://doi.org/10.1038/s41565-018-0202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0202-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing