Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics

Abstract

A previously unexplored property of two-dimensional electronic materials is their ability to graft electronic functionality onto colloidal particles to access local hydrodynamics in fluids to impart mobility and enter spaces inaccessible to larger electronic systems. Here, we demonstrate the design and fabrication of fully autonomous state machines built onto SU-8 particles powered by a two-dimensional material-based photodiode. The on-board circuit connects a chemiresistor circuit element and a memristor element, enabling the detection and storage of information after aerosolization, hydrodynamic propulsion to targets over 0.6 m away, and large-area surface sensing of triethylamine, ammonia and aerosolized soot in inaccessible locations. An incorporated retroreflector design allows for facile position location using laser-scanning optical detection. Such state machines may find widespread application as probes in confined environments, such as the human digestive tract, oil and gas conduits, chemical and biosynthetic reactors, and autonomous environmental sensors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CSM fabrication and aerosolization.
Fig. 2: Individual components of CSM.
Fig. 3: Aerosolizable electronics.
Fig. 4: CSMs for monitoring pipeline status.
Fig. 5: Large-area sensing.
Fig. 6: CSM standoff detection.

References

  1. 1.

    Lou, Z., Liang, Z. & Shen, G. Photodetectors based on two dimensional materials. J. Semicond. 37, 091001 (2016).

    Article  Google Scholar 

  2. 2.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nature 1, 16052 (2016).

    Google Scholar 

  3. 3.

    Varghese, S., Varghese, S., Swaminathan, S., Singh, K. & Mittal, V. Two-dimensional materials for sensing: graphene and beyond. Electronics 4, 651 (2015).

    Article  Google Scholar 

  4. 4.

    Yuan, J. & Lou, J. 2D materials: memristor goes two-dimensional. Nat. Nanotech. 10, 389–390 (2015).

    Article  Google Scholar 

  5. 5.

    Zhang, X., Hou, L., Ciesielski, A. & Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6, 1600671 (2016).

    Article  Google Scholar 

  6. 6.

    Khorasani, S. & Koottandavida, A. Nonlinear graphene quantum capacitors for electro-optics. 2D Mater. Appl. 1, 7 (2017).

    Article  Google Scholar 

  7. 7.

    Kaewsaneha, C., Tangboriboonrat, P., Polpanich, D. & Elaissari, A. Multifunctional fluorescent-magnetic polymeric colloidal particles: preparations and bioanalytical applications. ACS Appl. Mater. Interfaces 7, 23373–23386 (2015).

    Article  Google Scholar 

  8. 8.

    Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article  Google Scholar 

  9. 9.

    Udo, S. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Progress Phys. 75, 126001 (2012).

    Article  Google Scholar 

  10. 10.

    Velegol, D. Assembling colloidal devices by controlling interparticle forces. Proc. SPIE 1, 25 (2007).

    Google Scholar 

  11. 11.

    Spellings, M. et al. Shape control and compartmentalization in active colloidal cells. Proc. Natl Acad. Sci. USA 112, 4642 (2015).

    Article  Google Scholar 

  12. 12.

    Yao, J. et al. Nanowire nanocomputer as a finite-state machine. Proc. Natl Acad. Sci. USA 111, 2431–2435 (2014).

    Article  Google Scholar 

  13. 13.

    Ding, T. et al. Light-induced actuating nanotransducers. Proc. Natl Acad. Sci. USA 113, 5503–5507 (2016).

    Article  Google Scholar 

  14. 14.

    Funke, D. A. et al. A 200 μm by 100 μm smart dust system with an average current consumption of 1.3 nA. IEEE Proc. ICECS 2016 1, 512–515 (2016).

    Google Scholar 

  15. 15.

    Taniguchi, M. & Kawai, T. DNA electronics. Physica E 33, 1–12 (2006).

    Article  Google Scholar 

  16. 16.

    Siuti, P., Yazbek, J. & Lu, T. K. Engineering genetic circuits that compute and remember. Nat. Protoc. 9, 1292–1300 (2014).

    Article  Google Scholar 

  17. 17.

    Kamm, R. D. & Bashir, R. Creating living cellular machines. Ann. Biomed. Eng. 42, 445–459 (2014).

    Article  Google Scholar 

  18. 18.

    Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. Synthetic recombinase-based state machines in living cells. Science 353, aad8559 (2016).

    Article  Google Scholar 

  19. 19.

    Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012).

    Article  Google Scholar 

  20. 20.

    Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    Article  Google Scholar 

  21. 21.

    Ferrari, S. et al. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources 286, 25–46 (2015).

    Article  Google Scholar 

  22. 22.

    Seo, D., Carmena, J. M., Rabaey, J. M., Maharbiz, M. M. & Alon, E. Model validation of untethered, ultrasonic neural dust motes for cortical recording. J. Neurosci. Methods 244, 114–122 (2015).

    Article  Google Scholar 

  23. 23.

    Kim, H. & Kim, M. J. Electric field control of bacteria-powered microrobots using a static obstacle avoidance algorithm. IEEE Trans. Robot. 32, 125–137 (2016).

    Article  Google Scholar 

  24. 24.

    Servant, A., Qiu, F., Mazza, M., Kostarelos, K. & Nelson, B. J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981–2988 (2015).

    Article  Google Scholar 

  25. 25.

    Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    Article  Google Scholar 

  26. 26.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014).

    Article  Google Scholar 

  27. 27.

    Salvatore, G. A. et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 5, 2982 (2014).

    Article  Google Scholar 

  28. 28.

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  Google Scholar 

  29. 29.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    Article  Google Scholar 

  30. 30.

    Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

    Article  Google Scholar 

  31. 31.

    Ye, L., Li, H., Chen, Z. & Xu, J. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon. 3, 692–699 (2016).

    Article  Google Scholar 

  32. 32.

    Perkins, F. K. et al. Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013).

    Article  Google Scholar 

  33. 33.

    Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013).

    Article  Google Scholar 

  34. 34.

    Hao, C. et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv. Funct. Mater. 26, 2016–2024 (2016).

    Article  Google Scholar 

  35. 35.

    Wang, W. et al. MoS2 memristor with photoresistive switching. Sci. Rep. 6, 31224 (2016).

    Article  Google Scholar 

  36. 36.

    Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotech. 10, 403–406 (2015).

    Article  Google Scholar 

  37. 37.

    Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).

    Article  Google Scholar 

  38. 38.

    Lillesand, T., Kiefer, R. W. & Chipman, J. in Remote Sensing and Image Interpretation 1–59 (Wiley, New York, NY, 2014).

  39. 39.

    Brunete, A., Hernando, M., Torres, J. E. & Gambao, E. Heterogeneous multi-configurable chained microrobot for the exploration of small cavities. Autom. Constr. Magaz. 21, 184–198 (2012).

    Article  Google Scholar 

  40. 40.

    Murvay, P.-S. & Silea, I. A survey on gas leak detection and localization techniques. J. Loss Prev. Process Ind. 25, 966–973 (2012).

    Article  Google Scholar 

  41. 41.

    Rajtar, J. M. & Muthiah, R. Pipeline leak detection system for oil and gas flowlines. J. Manufact. Sci. Eng. 119, 105–109 (1997).

    Article  Google Scholar 

  42. 42.

    Gavrilescu, M. & Tudose, R. Z. Residence time distribution of the liquid phase in a concentric-tube airlift reactor. Chem. Eng. Process. 38, 225–238 (1999).

    Article  Google Scholar 

  43. 43.

    Kurt, S. K., Gelhausen, M. G. & Kockmann, N. Axial dispersion and heat transfer in a milli/microstructured coiled flow inverter for narrow residence time distribution at laminar flow. Chem. Eng. Tech. 38, 1122–1130 (2015).

    Article  Google Scholar 

  44. 44.

    Tan, X., Sun, Z. & Akyildiz, I. F. Wireless underground sensor networks: MI-based communication systems for underground applications. IEEE Antennas Propag. 57, 74–87 (2015).

    Article  Google Scholar 

  45. 45.

    Yamate, T., Fujisawa, G. & Ikegami, T. Optical sensors for the exploration of oil and gas. J. Light. Technol. 35, 3538–3545 (2017).

    Article  Google Scholar 

  46. 46.

    Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Article  Google Scholar 

  47. 47.

    Costello, B. P. J. d. L., Ledochowski, M. & Ratcliffe, N. M. The importance of methane breath testing: a review. J. Breath. Res. 7, 024001 (2013).

    Article  Google Scholar 

  48. 48.

    Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra21 (2012).

    Article  Google Scholar 

  49. 49.

    Timmer, B., Olthuis, W. & Berg, A. Ammonia sensors and their applications—a review. Sens. Actuat. B 107, 666–677 (2005).

    Article  Google Scholar 

  50. 50.

    Nielsen, A. (ed.) in Ammonia: Catalysis and Manufacture (ed. Nielsen, A.) 329–346 (Springer, Berlin, 1995).

  51. 51.

    Cho, B. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015).

    Article  Google Scholar 

  52. 52.

    Bernstein, J. A. et al. Health effects of air pollution. J. Allergy Clin. Immunol. 114, 1116–1123 (2004).

    Article  Google Scholar 

  53. 53.

    Derbyshire, E. Natural minerogenic dust and human health. AMBIO 36, 73–77 (2007).

    Article  Google Scholar 

  54. 54.

    Grob, B., Schmid, J., Ivleva, N. P. & Niessner, R. Conductivity for soot sensing: possibilities and limitations. Anal. Chem. 84, 3586–3592 (2012).

    Article  Google Scholar 

  55. 55.

    Switkes, M., Ervin, B. L., Kingsborough, R. P., Rothschild, M. & Sworin, M. Retroreflectors for remote readout of colorimetric sensors. Sens. Actuat. B 160, 1244–1249 (2011).

    Article  Google Scholar 

  56. 56.

    Yu, Y. et al. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013).

    Article  Google Scholar 

  57. 57.

    Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a 2015 US Office of Naval Research Multi University Research Initiative (MURI) grant on Foldable and Adaptive Two-Dimensional Electronics (FATE) at MIT, Harvard and University of Southern California. V.B.K. is supported by The Swiss National Science Foundation (projects nos P2ELP3_162149 and P300P2_174469). Microfabrication for this work was performed at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. D.K. is supported by a Grant-in-Aid for JSPS Fellows (JSPS KAKENHI grant no. 15J07423) and Encouragement of Young Scientists (B) (JSPS KAKENHI grant no. JP16K17485) from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Contributions

V.B.K. and M.S.S. conceived the idea and planned experiments with the assistance of P.L., D.K. and A.T.L. V.B.K. fabricated samples, performed experimental measurements, and analysed data with the assistance of P.L. and D.K. V.B.K. and J.A.L. fabricated 2D materials with inputs from Y.S., P.L. and D.K. V.B.K., A.L.C. and M.S.S. wrote the manuscript with inputs from all the authors. All authors contributed to discussions informing the research.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–18, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koman, V.B., Liu, P., Kozawa, D. et al. Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics. Nature Nanotech 13, 819–827 (2018). https://doi.org/10.1038/s41565-018-0194-z

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research