Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interlayer valley excitons in heterobilayers of transition metal dichalcogenides

Abstract

Stacking different two-dimensional crystals into van der Waals heterostructures provides an exciting approach to designing quantum materials that can harness and extend the already fascinating properties of the constituents. Heterobilayers of transition metal dichalcogenides are particularly attractive for low-dimensional semiconductor optics because they host interlayer excitons—with electrons and holes localized in different layers—which inherit valley-contrasting physics from the monolayers and thereby possess various novel and appealing properties compared to other solid-state nanostructures. This Review presents the contemporary experimental and theoretical understanding of these interlayer excitons. We discuss their unique optical properties arising from the underlying valley physics, the strong many-body interactions and electrical control resulting from the electric dipole moment, and the unique effects of a moiré superlattice on the interlayer exciton potential landscape and optical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterobilayers of monolayer transition metal dichalcogenides.
Fig. 2: Interlayer excitons and charge transfer in TMD heterobilayers.
Fig. 3: Interlayer valley exciton properties.
Fig. 4: Exciton–exciton interactions.
Fig. 5: Moiré landscape for interlayer excitons.

Similar content being viewed by others

References

  1. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS  Google Scholar 

  2. Sun, D., Lai, J. W., Ma, J. C., Wang, Q. S. & Liu, J. Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides. Chin. Phys. B 26, 037801 (2017).

    Google Scholar 

  3. Yu, H., Cui, X., Xu, X. & Yao, W. Valley excitons in two-dimensional semiconductors. Natl. Sci. Rev. 2, 57–70 (2015).

    CAS  Google Scholar 

  4. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    CAS  Google Scholar 

  5. Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Google Scholar 

  6. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

    CAS  Google Scholar 

  7. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

    CAS  Google Scholar 

  8. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    Google Scholar 

  9. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotech. 8, 634–638 (2013).

    CAS  Google Scholar 

  10. Wang, G. et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 117, 187401 (2016).

    CAS  Google Scholar 

  11. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2016).

    Google Scholar 

  12. Hao, K. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12, 677–682 (2016).

    CAS  Google Scholar 

  13. Schmidt, R. et al. Magnetic-field-induced rotation of polarized light emission from monolayer WS2. Phys. Rev. Lett. 117, 077402 (2016).

    Google Scholar 

  14. Yu, T. & Wu, M. W. Valley depolarization due to intervalley and intravalley electron–hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014).

  15. Maialle, M. Z., de Andrada e Silva, E. A. & Sham, L. J. Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776–15788 (1993).

    CAS  Google Scholar 

  16. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Google Scholar 

  17. Yu, H., Liu, G. B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

    CAS  Google Scholar 

  18. Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302(R) (2014).

    Google Scholar 

  19. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  20. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  21. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Google Scholar 

  22. Andres, C.-G. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Google Scholar 

  23. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Google Scholar 

  24. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    CAS  Google Scholar 

  25. Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    CAS  Google Scholar 

  26. Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

  27. Heo, H. et al. Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 27, 3803–3810 (2015).

    CAS  Google Scholar 

  28. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  Google Scholar 

  29. Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    CAS  Google Scholar 

  30. Duan, X., Wang, C., Pan, A., Yu, R. & Duan, X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015).

    CAS  Google Scholar 

  31. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

  32. Lin, Y. C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015).

    CAS  Google Scholar 

  33. Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 111, 6198–6202 (2014).

    CAS  Google Scholar 

  34. Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures — the quantum-confined Stark-effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

    CAS  Google Scholar 

  35. Charbonneau, S., Thewalt, M. L., Koteles, E. S. & Elman, B. Transformation of spatially direct to spatially indirect excitons in coupled double quantum wells. Phys. Rev. B 38, 6287–6290 (1988).

    CAS  Google Scholar 

  36. Chen, Y. J., Koteles, E. S., Elman, B. S. & Armiento, C. A. Effect of electric fields on excitons in a coupled double-quantum-well structure. Phys. Rev. B 36, 4562–4565 (1987).

    CAS  Google Scholar 

  37. Combescot, M., Combescot, R. & Dubin, F. Bose–Einstein condensation and indirect excitons: a review. Rep. Progr. Phys. 80, 066501 (2017).

    Google Scholar 

  38. Butov, L. V. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577–R1613 (2004).

    CAS  Google Scholar 

  39. Butov, L. V. Cold exciton gases in coupled quantum well structures. J. Phys. Condens. Matter 19, 295202 (2007).

    CAS  Google Scholar 

  40. Rapaport, R. & Chen, G. Experimental methods and analysis of cold and dense dipolar exciton fluids. J. Phys. Condens. Matter 19, 295207 (2007).

    Google Scholar 

  41. Golub, J. E., Kash, K., Harbison, J. P. & Florez, L. T. Long-lived spatially indirect excitons in coupled GaAs/AlxGa1–xAs quantum wells. Phys. Rev. B 41, 8564–8567 (1990).

    CAS  Google Scholar 

  42. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    CAS  Google Scholar 

  43. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    CAS  Google Scholar 

  44. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

  45. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  Google Scholar 

  46. Liu, G. B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    CAS  Google Scholar 

  47. Ozcelik, V. O., Azadani, J. G., Yang, C., Koester, S. J. & Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016).

    Google Scholar 

  48. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Google Scholar 

  49. Chiu, M. H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).

    CAS  Google Scholar 

  50. Hill, H. M., Rigosi, A. F., Rim, K. T., Flynn, G. W. & Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16, 4831–4837 (2016).

    CAS  Google Scholar 

  51. Wang, Y., Wang, Z., Yao, W., Liu, G. B. & Yu, H. Y. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017).

    Google Scholar 

  52. Komsa, H. P. & Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013).

    Google Scholar 

  53. Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

    CAS  Google Scholar 

  54. Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2–WS2 heterojunction. Phys. Rev. B 87, 075451 (2013).

  55. Terrones, H., Lopez-Urias, F. & Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).

    Google Scholar 

  56. Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

    CAS  Google Scholar 

  57. Amin, B., Singh, N. & Schwingenschlogl, U. Heterostructures of transition metal dichalcogenides. Phys. Rev. B 92, 075439 (2015).

    Google Scholar 

  58. Kang, J., Li, J., Li, S. S., Xia, J. B. & Wang, L. W. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485–5490 (2013).

    CAS  Google Scholar 

  59. Tongay, S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014).

    CAS  Google Scholar 

  60. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    CAS  Google Scholar 

  61. van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).

    Google Scholar 

  62. Ceballos, F., Bellus, M. Z., Chiu, H. Y. & Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).

    CAS  Google Scholar 

  63. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech. 9, 682–686 (2014).

    CAS  Google Scholar 

  64. Furchi, M. M., Pospischil, A., Libisch, F., Burgdorfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    CAS  Google Scholar 

  65. Chiu, M. H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).

  66. Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 15, 5033–5038 (2015).

    CAS  Google Scholar 

  67. Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

    CAS  Google Scholar 

  68. Chen, H. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 7, 12512 (2016).

    CAS  Google Scholar 

  69. Peng, B. et al. Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. 2D Mater. 3, 025020 (2016).

  70. Schaibley, J. R. et al. Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun. 7, 13747 (2016).

    CAS  Google Scholar 

  71. Surrente, A. et al. Defect healing and charge transfer-mediated valley polarization in MoS2/MoSe2/MoS2 trilayer van der Waals heterostructures. Nano Lett. 17, 4130–4136 (2017).

    CAS  Google Scholar 

  72. Wang, K. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10, 6612–6622 (2016).

    CAS  Google Scholar 

  73. Yu, H., Wang, Y., Tong, Q., Xu, X. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    Google Scholar 

  74. Yu, H., Liu, G. B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Google Scholar 

  75. Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    CAS  Google Scholar 

  76. Jiang, C. et al. Microsecond dark-exciton valley polarization memory in 2D heterostructures. Nat. Commun. 9, 753 (2017).

    Google Scholar 

  77. FengCheng, Wu,T. L. & MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2017).

    Google Scholar 

  78. Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).

    CAS  Google Scholar 

  79. Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 17, 5342–5349 (2017).

    CAS  Google Scholar 

  80. Lui, C. H. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91, 165403 (2015).

    Google Scholar 

  81. Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

    Google Scholar 

  82. Luong, D. H. et al. Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Adv. Mater. 29, 1701512 (2017).

    Google Scholar 

  83. Ceballos, F., Bellus, M. Z., Chiu, H. Y. & Zhao, H. Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 7, 17523–17528 (2015).

    CAS  Google Scholar 

  84. Zhang, K. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10, 3852–3858 (2016).

    CAS  Google Scholar 

  85. Mouri, S. et al. Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers. Nanoscale 9, 6674–6679 (2017).

    CAS  Google Scholar 

  86. Bellus, M. Z., Ceballos, F., Chiu, H. Y. & Zhao, H. Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9, 6459–6464 (2015).

    CAS  Google Scholar 

  87. Nagler, P. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 8, 1551 (2017).

    Google Scholar 

  88. Kim, M. S. et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe2/MoS2 heterostacked multilayers. ACS Nano 10, 6211–6219 (2016).

    CAS  Google Scholar 

  89. Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 87, 161403(R) (2013).

    Google Scholar 

  90. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    CAS  Google Scholar 

  91. Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401(R) (2013).

    Google Scholar 

  92. Hsu, W. T. et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951–2958 (2014).

    CAS  Google Scholar 

  93. Bollinger, M. V. et al. One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87, 196803 (2001).

    CAS  Google Scholar 

  94. Wang, Z. et al. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J. Am. Chem. Soc. 132, 13840–13847 (2010).

    CAS  Google Scholar 

  95. Chu, R.-L. et al. Spin–orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. Phys. Rev. B 89, 155317 (2014).

  96. Ceballos, F., Bellus, M. Z., Chiu, H.-Y. & Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).

    CAS  Google Scholar 

  97. Zhu, X. et al. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015).

    CAS  Google Scholar 

  98. Baranowski, M. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 17, 6360–6365 (2017).

    CAS  Google Scholar 

  99. Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).

    CAS  Google Scholar 

  100. Forg, M. et al. Cavity-control of bright and dark interlayer excitons in van der Waals heterostructures. Preprint at https://arxiv.org/abs/1710.00990 (2017).

  101. Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    Google Scholar 

  102. Gao, S., Yang, L. & Spataru, C. D. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett. 17, 7809–7813 (2017).

    CAS  Google Scholar 

  103. Wang, Z., Chiu, Y. H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2017).

    Google Scholar 

  104. Calman, E. V. et al. Control of excitons in multi-layer van der Waals heterostructures. Appl. Phys. Lett. 108, 101901 (2016).

    Google Scholar 

  105. Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2017).

    CAS  Google Scholar 

  106. He, Y. et al. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Lett. 16, 3314–3320 (2016).

    CAS  Google Scholar 

  107. Butov, L. V., Lai, C. W., Ivanov, A. L., Gossard, A. C. & Chemla, D. S. Towards Bose–Einstein condensation of excitons in potential traps. Nature 417, 47–52 (2002).

    CAS  Google Scholar 

  108. Debnath, B., Barlas, Y., Wickramaratne, D., Neupane, M. R. & Lake, R. K. Exciton condensate in bilayer transition metal dichalcogenides: strong coupling regime. Phys. Rev. B 96, 174504 (2017).

  109. Cohen, K., Khodas, M., Laikhtman, B., Santos, P. V. & Rapaport, R. Vertically coupled dipolar exciton molecules. Phys. Rev. B 93, 235310 (2016).

    Google Scholar 

  110. Liu, C. S., Xu, T. F., Liu, Y. H. & Jing, X. L. Theory of indirect exciton photoluminescence in elevated quantum trap. Phys. E 63, 193–198 (2014).

    CAS  Google Scholar 

  111. Schinner, G. J. et al. Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum Wells. Phys. Rev. Lett. 110, 127403 (2013).

    CAS  Google Scholar 

  112. Dietl, S. et al. Collective electronic excitation in a trapped ensemble of photogenerated dipolar excitons and free holes revealed by inelastic light scattering. Phys. Rev. B 95, 235310 (2017).

    Google Scholar 

  113. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Google Scholar 

  114. Wu, M., Qian, X. & Li, J. Tunable exciton funnel using moiré superlattice in twisted van der Waals bilayer. Nano Lett. 14, 5350–5357 (2014).

    CAS  Google Scholar 

  115. Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2016).

    Google Scholar 

  116. Cosma, D. A., Wallbank, J. R., Cheianov, V. & Fal'ko, V. I. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Faraday Discuss. 173, 137–143 (2014).

    CAS  Google Scholar 

  117. Polini, M., Guinea, F., Lewenstein, M., Manoharan, H. C. & Pellegrini, V. Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotech. 8, 625–633 (2013).

    CAS  Google Scholar 

  118. Li, Y. M. et al. Light-induced exciton spin Hall effect in van der Waals heterostructures. Phys. Rev. Lett. 115, 166804 (2015).

    Google Scholar 

  119. Seamons, J. A., Morath, C. P., Reno, J. L. & Lilly, M. P. Coulomb drag in the exciton regime in electron–hole bilayers. Phys. Rev. Lett. 102, 026804 (2009).

  120. Lamas-Linares, A., Howell, J. C. & Bouwmeester, D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001).

    CAS  Google Scholar 

  121. Perczel, J. et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett. 119, 023603 (2017).

    CAS  Google Scholar 

  122. Park, K.-D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip induced Purcell effect. Nat. Nanotech. 13, 59–64 (2017).

    Google Scholar 

  123. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2014).

    Google Scholar 

  124. Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

    CAS  Google Scholar 

  125. Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).

    CAS  Google Scholar 

  126. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

Work at the University of Washington was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0018171). Work at HKU is supported by the Croucher Foundation (Croucher Innovation Award), UGC (AoE/P-04/08) and RGC (HKU17312916) of HKSAR. X.X. acknowledges the support from the State of Washington funded Clean Energy Institute and from the Boeing Distinguished Professorship in Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Yao or Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, P., Yu, H., Seyler, K.L. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotech 13, 1004–1015 (2018). https://doi.org/10.1038/s41565-018-0193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0193-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing