Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissipative adaptation in driven self-assembly leading to self-dividing fibrils

Abstract

Out-of-equilibrium self-assembly of proteins such as actin and tubulin is a key regulatory process controlling cell shape, motion and division. The design of functional nanosystems based on dissipative self-assembly has proven to be remarkably difficult due to a complete lack of control over the spatial and temporal characteristics of the assembly process. Here, we show the dissipative self-assembly of FtsZ protein (a bacterial homologue of tubulin) within coacervate droplets. More specifically, we show how such barrier-free compartments govern the local availability of the energy-rich building block guanosine triphosphate, yielding highly dynamic fibrils. The increased flux of FtsZ monomers at the tips of the fibrils results in localized FtsZ assembly, elongation of the coacervate compartments, followed by division of the fibrils into two. We rationalize the directional growth and division of the fibrils using dissipative reaction–diffusion kinetics and capillary action of the filaments as main inputs. The principle presented here, in which open compartments are used to modulate the rates of dissipative self-assembly by restricting the absorption of energy from the environment, may provide a general route to dissipatively adapting nanosystems exhibiting life-like behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A combination of FtsZ dissipative self-assembly and compartmentalization in coacervate droplets can lead to dissipative adaptation.
Fig. 2: FtsZ filaments form bundles that can deform coacervate droplets.
Fig. 3: Shape of the compartmentalized FtsZ assemblies depends on the available drive.
Fig. 4: Fibrils are dynamic, self-dividing structures of FtsZ bundles with a coacervate layer.
Fig. 5: Division of fibrils can be modelled using a combination of reaction–diffusion kinetics and capillary action.

Similar content being viewed by others

References

  1. Karsenti, E. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008).

    Article  Google Scholar 

  2. Rothfield, L., Taghbalout, A. & Shih, Y.-L. Spatial control of bacterial division-site placement. Nat. Rev. Microbiol. 3, 959–968 (2005).

    Article  Google Scholar 

  3. Typas, A. & Sourjik, V. Bacterial protein networks: properties and functions. Nat. Rev. Microbiol. 13, 559–572 (2015).

    Article  Google Scholar 

  4. Martos, A., Jiménez, M., Rivas, G. & Schwille, P. Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol. 22, 634–643 (2012).

    Article  Google Scholar 

  5. Fratzl, P. & Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009).

    Article  Google Scholar 

  6. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  Google Scholar 

  7. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418 (2002).

    Article  Google Scholar 

  8. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  Google Scholar 

  9. Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).

    Article  Google Scholar 

  10. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  Google Scholar 

  11. Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

    Article  Google Scholar 

  12. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotech. 10, 111–119 (2015).

    Article  Google Scholar 

  13. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    Article  Google Scholar 

  14. Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).

    Article  Google Scholar 

  15. Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotech. 11, 585–592 (2016).

    Article  Google Scholar 

  16. England, J. L. Dissipative adaptation in driven self-assembly. Nat. Nanotech. 10, 919–923 (2015).

    Article  Google Scholar 

  17. Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    Article  Google Scholar 

  18. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article  Google Scholar 

  19. Zwicker, D., Seyboldt, R., Weber, C. A., Hyman, A. A. & Jülicher, F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13, 408–413 (2016).

    Article  Google Scholar 

  20. Haeusser, D. P. & Margolin, W. Splitsville: structure and functional insights into the dynamic bacterial Z ring. Nat. Rev. Microbiol. 14, 305–319 (2016).

    Article  Google Scholar 

  21. Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).

    Article  Google Scholar 

  22. Huang, K. H., Durand-Heredia, J. & Janakiraman, A. FtsZ ring stability: of bundles, tubules, crosslinks, and curves. J. Bacteriol. 195, 1859–1868 (2013).

    Article  Google Scholar 

  23. Mukherjee, A. & Lutkenhaus, J. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17, 462–469 (1998).

    Article  Google Scholar 

  24. Miyazaki, M., Chiba, M., Eguchi, H., Ohki, T. & Ishiwata, S. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat. Cell Biol. 17, 480–489 (2015).

    Article  Google Scholar 

  25. Claessens, M. M. A. E., Tharmann, R., Kroy, K. & Bausch, A. R. Microstructure and viscoelasticity of confined semiflexible polymer networks. Nat. Phys. 2, 186–189 (2006).

    Article  Google Scholar 

  26. Mellouli, S. et al. Self-organization of the bacterial cell-division protein FtsZ in confined environments. Soft Matter 9, 10493–10500 (2013).

    Article  Google Scholar 

  27. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  Google Scholar 

  28. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    Article  Google Scholar 

  29. Hernández-Vega, A. et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 20, 2304–2312 (2017).

    Article  Google Scholar 

  30. Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    Article  Google Scholar 

  31. Aumiller, W. M. Jr & Keating, C. D. Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: reversible formation and partitioning in aqueous biphasic systems. Adv. Coll. Int. Sci. 239, 75–87 (2017).

    Article  Google Scholar 

  32. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    Article  Google Scholar 

  33. Spruijt, E., Sprakel, J., Cohen Stuart, M. A. & van der Gucht, J. Interfacial tension between a complex coacervate phase and its coexisting aqueous phase. Soft Matter 6, 172–178 (2010).

    Article  Google Scholar 

  34. Qin, J. et al. Interfacial tension of polyelectrolyte complex coacervate phases. ACS Macro Lett. 3, 565–568 (2014).

    Article  Google Scholar 

  35. Pesce, D., Wu, Y., Kolbe, A., Weil, T. & Herrmann, A. Enhancing cellular uptake of GFP via unfolded supercharged protein tags. Biomaterials 34, 4360–4367 (2013).

    Article  Google Scholar 

  36. Lu, Z. et al. Universal nanodroplet branches from confining the Ouzo effect. Proc. Natl Acad. Sci. USA 114, 10332–10337 (2017).

    Article  Google Scholar 

  37. Monterrosso, B. et al. Mg2+-linked self-assembly of FtsZ in the presence of GTP or a GTP analogue involves the concerted formation of narrow size distribution of oligomeric species. Biochemistry 51, 4541–4550 (2012).

    Article  Google Scholar 

  38. Lan, G., Dajkovic, A., Wirtz, D. & Sun, S. X. Polymerization and bundling kinetics of FtsZ filaments. Biophys. J. 95, 4045–4056 (2008).

    Article  Google Scholar 

  39. Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    Article  Google Scholar 

  40. Brakke, K. A. The Surface Evolver. Exp. Math. 1, 141–165 (1992).

    Article  Google Scholar 

  41. Kachmann, T., Owen, J. A. & England, J. L. Self-organized resonance during the search of a diverse chemical space. Phys. Rev. Lett. 119, 038001 (2017).

    Article  Google Scholar 

  42. Redick, S. D., Stricker, J., Briscoe, G. & Erickson, H. P. Mutants of FtsZ targeting the protofilament interface: effects on cell division and GTPase activity. J. Bacteriol. 187, 2727–2736 (2005).

    Article  Google Scholar 

  43. Buske, P. J. & Levin, P. A. A flexible C-terminal linker is required for proper FtsZ assembly in vitro and cytokinetic ring formation in vitro. Mol. Microbiol. 89, 249–263 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO, VICI grant 700.10.44 and ECHO-STIP grant 717.012.001) and funding from the Dutch Ministry of Education, Culture and Science (Gravity program 024.001.035). G.R. is supported by the Spanish Government through grant BFU2016-75471-C2-1-P. A.H. is grateful for financial support from the European Commission through an ERC Advanced Grant (SUPRABIOTICS, no. 694610). The authors thank K.A. Brakke (Susquehanna University) for help with Surface Evolver modelling.

Author information

Authors and Affiliations

Authors

Contributions

E.t.B., J.G. and E.S. carried out all experiments. A.H. and G.R. contributed materials (GFP-K72 and FtsZ/Alex647-FtsZ, respectively). Modelling was performed by E.S. All authors discussed the results. E.S. and W.T.S.H. wrote the manuscript.

Corresponding authors

Correspondence to Evan Spruijt or Wilhelm T. S. Huck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video 1

Time evolution of FtsZ (1.0 g l–1 overall concentration) filaments bundled inside torula yeast RNA/GFP-K72 coacervates upon exposure to a slowly increasing concentration of GTP.

Supplementary Video 2

Dynamic fibrils of FtsZ filaments bundled inside torula yeast RNA/GFP-K72 coacervates, displaying bending, motion, growth, splitting and fusion at 1.0 g l–1 FtsZ and an initial GTP concentration of 10 mM.

Supplementary Video 3

Fibrils of FtsZ filaments bundled inside torula yeast RNA/GFP-K72 coacervates in the presence of the slowly hydrolysable GTP analogue GMPCPP, displaying no dynamic behaviour.

Supplementary Video 4

Dynamics of elongated coacervate droplets of torula yeast RNA/GFP-K72 at 1.0 g l–1 FtsZ and an initial GTP concentration of 5 mM.

Supplementary Video 5

Initial dynamics of very long fibrils of FtsZ filaments bundled inside torula yeast RNA/GFP-K72 coacervates at 1.0 g l–1 FtsZ and 10.2 mM GTP.

Supplementary Video 6

A droplet held between five parallel filaments is forced to stretch and split by capillary action caused by four additional filaments touching both ends of the initial droplet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

te Brinke, E., Groen, J., Herrmann, A. et al. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nature Nanotech 13, 849–855 (2018). https://doi.org/10.1038/s41565-018-0192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0192-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing