Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface chemistry and buried interfaces in all-inorganic nanocrystalline solids

Abstract

Semiconducting nanomaterials synthesized using wet chemical techniques play an important role in emerging optoelectronic and photonic technologies. Controlling the surface chemistry of the nano building blocks and their interfaces with ligands is one of the outstanding challenges for the rational design of these systems. We present an integrated theoretical and experimental approach to characterize, at the atomistic level, buried interfaces in solids of InAs nanoparticles capped with Sn2S64– ligands. These prototypical nanocomposites are known for their promising transport properties and unusual negative photoconductivity. We found that inorganic ligands dissociate on InAs to form a surface passivation layer. A nanocomposite with unique electronic and transport properties is formed, that exhibits type II heterojunctions favourable for exciton dissociation. We identified how the matrix density, sulfur content and specific defects may be designed to attain desirable electronic and transport properties, and we explain the origin of the measured negative photoconductivity of the nanocrystalline solids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measured electronic and optical properties of layers of 4.5 nm InAs NCs capped with Sn2S64– ligands.
Fig. 2: Calculated interface energies between InAs(001) and Sn2S64– ligands.
Fig. 3: X-ray photoemission and Raman spectra of InAs NPs.
Fig. 4: MD simulations of InAs NCs embedded in SnxSy matrices.
Fig. 5: Isodensity plots of the square wavefunction moduli for representative defect states of InAs NCs interfaces with amorphous matrices.
Fig. 6: Band alignment and defect states at the nanoparticle–matrix heterojunction as a function of S content.
Fig. 7: Model of ambipolar photoresponse of InAs NCs with Sn2S64– ligands.

Similar content being viewed by others

References

  1. Park, J., Joo, J., Kwon, S., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007).

    Article  Google Scholar 

  2. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005).

    Article  Google Scholar 

  3. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  Google Scholar 

  4. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  Google Scholar 

  5. Parak, W. J. Complex Colloidal Assembly. Science 334, 1359–1360 (2011).

    Article  Google Scholar 

  6. Talapin, D. V. Nanocrystal solids: A modular approach to materials design. MRS Bull. 37, 63–71 (2012).

    Article  Google Scholar 

  7. Kovalenko, M. V. Chemical design of nanocrystal solids. CHIMIA 67, 316–321 (2013).

    Article  Google Scholar 

  8. Wippermann, S., He, Y., Vörös, M. & Galli, G. Novel silicon phases and nanostructures for solar energy conversion. Appl. Phys. Rev. 3, 040807 (2016).

    Article  Google Scholar 

  9. Wippermann, S. et al. Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS. Phys. Rev. Lett. 112, 106801 (2014).

    Article  Google Scholar 

  10. Wippermann, S. et al. High-pressure core structures of Si nanoparticles for solar energy conversion. Phys. Rev. Lett. 110, 046804 (2013).

    Article  Google Scholar 

  11. Vörös, M. et al. Germanium nanoparticles with non-diamond core structures for solar energy conversion. J. Mater. Chem. A 2, 9820–9827 (2014).

    Article  Google Scholar 

  12. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  Google Scholar 

  13. Boles, M. A. & Talapin, D. V. Connecting the dots. Science 344, 1340–1341 (2014).

    Article  Google Scholar 

  14. Leatherdale, C. A. et al. Photoconductivity in CdSe quantum dot solids. Phys. Rev. B 62, 2669 (2000).

    Article  Google Scholar 

  15. Kovalenko, M. V., Bodnarchuk, M. I., Zaumseil, J., Lee, J.-S. & Talapin, D. V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J. Am. Chem. Soc. 132, 10085–10092 (2010).

    Article  Google Scholar 

  16. Liu, W., Lee, J.-S. & Talapin, D. V. III–V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 135, 1349–1357 (2013).

    Article  Google Scholar 

  17. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotech. 6, 348–352 (2011).

    Article  Google Scholar 

  18. Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotech. 7, 577–582 (2012).

    Article  Google Scholar 

  19. Ning, Z. et al. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 24, 6295–6299 (2012).

    Article  Google Scholar 

  20. Kagan, C., Lifshitz, E., Sargent, E. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

    Article  Google Scholar 

  21. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  Google Scholar 

  22. Chung, D. S. et al. Low voltage, hysteresis free, and high mobility transistors from all-inorganic colloidal nanocrystals. Nano Lett. 12, 1813–1820 (2012).

    Article  Google Scholar 

  23. Huang, J. et al. Surface functionalization of semiconductor and oxide nanocrystals with small inorganic oxoanions (PO4 3−, MoO4 2−) and polyoxometalate ligands. ACS Nano 8, 9388–9402 (2014).

    Article  Google Scholar 

  24. Cordones, A. A., Scheele, M., Alivisatos, A. P. & Leone, S. R. Probing the interaction of single nanocrystals with inorganic capping ligands: Time-resolved fluorescence from CdSe–CdS quantum dots capped with chalcogenidometalates. J. Am. Chem. Soc. 134, 18366–18373 (2012).

    Article  Google Scholar 

  25. Llordes, A., Garcia, G., Gazques, J. & Milliron, D. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).

    Article  Google Scholar 

  26. Yakunin, S. et al. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals. ACS Nano 8, 12883–12894 (2014).

    Article  Google Scholar 

  27. Ekimov, A. Growth and optical properties of semiconductor nanocrystals in a glass matrix. J. Lumin. 70, 1–20 (1996).

    Article  Google Scholar 

  28. Protesescu, L. et al. Atomistic description of thiostannate-capped CdSe nanocrystals: Retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry. J. Am. Chem. Soc. 137, 1862–1874 (2015).

    Article  Google Scholar 

  29. Fan, J.-F., Oigawa, H. & Nannichi, Y. The effect of (NH4)2S treatment on the interface characteristics of GaAs MIS structures. Jpn J. Appl. Phys. 27, L1331–L1333 (1988).

    Article  Google Scholar 

  30. Lebedev, M. V., Mayer, T. & Jaegermann, W. Sulfur adsorption at GaAs(1 0 0) from solution: role of the solvent in surface chemistry. Surf. Sci. 547, 171–183 (2003).

    Article  Google Scholar 

  31. Bessolov, V. & Lebedev, M. Chalcogenide passivation of III–V semiconductor surfaces. Semiconductors 32, 1141–1156 (1998).

    Article  Google Scholar 

  32. Petrovykh, D., Yang, M. & Whitman, L. Chemical and electronic properties of sulfur-passivated InAs surfaces. Surf. Sci. 523, 231–240 (2003).

    Article  Google Scholar 

  33. L’vova, T. et al. Sulfide passivation of InAs(100) substrates in Na2S solutions. Phys. Solid State 51, 1114–1120 (2009).

    Article  Google Scholar 

  34. Petrovykh, D. Y., Sullivan, J. M. & Whitman, L. J. Quantification of discrete oxide and sulfur layers on sulfur-passivated InAs by XPS. Surf. Interface Anal. 37, 989–997 (2005).

    Article  Google Scholar 

  35. Suyatin, D. B., Thelander, C., Björk, M. T., Maximov, I. & Samuelson, L. Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 18, 105307 (2007).

    Article  Google Scholar 

  36. Chasse, T., Chasse, A., Peisert, H. & Streubel, P. Sulfur-modified surface of InP(001): Evidence for sulfur incorporation and surface oxidation. Appl. Phys. A 65, 543–549 (1997).

    Article  Google Scholar 

  37. Gallet, D. & Hollinger, G. Chemical, structural, and electronic properties of sulfur-passivated InP(001) (2x1) surfaces treated with (NH4)2Sx. Appl. Phys. Lett. 62, 982–984 (1993).

    Article  Google Scholar 

  38. Srivastava, V., Janke, E. M., Diroll, B. T., Schaller, R. D. & Talapin, D. V. Facile, economic and size-tunable synthesis of metal arsenide nanocrystals. Chem. Mater. 28, 6797–6802 (2016).

    Article  Google Scholar 

  39. Rao, C. R., Sundaram, S., Schmidt, R. & Comas, J. Study of ion-implantation damage in GaAs:Be and InP:Be using Raman scattering. J. Appl. Phys. 54, 1808–1815 (1983).

    Article  Google Scholar 

  40. Bedel, E. et al. Characterization of implantation and annealing of Zn-implanted InP by Raman spectrometry. J. Appl. Phys. 60, 1980–1984 (1986).

    Article  Google Scholar 

  41. Skone, J. H., Govoni, M. & Galli, G. Self-consistent hybrid functional for condensed systems. Phys. Rev. B 89, 195112 (2014).

    Article  Google Scholar 

  42. Perdew, J., Ernzerhof, M. & Burke, K. J. Rationale for mixing exact exchange with density functional approximations. Chem. Phys. 105, 9982–9985 (1996).

    Google Scholar 

  43. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    Article  Google Scholar 

  44. Yang, Y. et al. Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory. Nano Lett. 15, 5875–5882 (2015).

    Article  Google Scholar 

  45. Burton, L. A. & Walsh, A. Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3. J. Phys. Chem. C 116, 24262–24267 (2012).

    Article  Google Scholar 

  46. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  47. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  48. Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990).

    Article  Google Scholar 

  49. Zhang, S. B. & Wei, S.-H. Surface energy and the common dangling bond rule for semiconductors. Phys. Rev. Lett. 92, 086102 (2004).

    Article  Google Scholar 

  50. Gygi, F. Architecture of Qbox: A scalable first-principles molecular dynamics code. IBM J. Res. Dev. 52, 137–144 (2008).

    Article  Google Scholar 

  51. Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36 (2015).

    Article  Google Scholar 

  52. Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  53. Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78, 1396 (1997).

Download references

Acknowledgements

V. Kamysbayev helped with the elemental analysis of the samples. V.S. was primarily supported by the University of Chicago Materials Research Science and Engineering Center, funded by NSF under award no. DMR-1420709. G.G., E.J. and D.T. were supported by MICCoM as part of the Computational Materials Sciences Program funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division (5J-30161-0010A). E.S. and S.W. were supported by the German Ministry of Education and Research (BMBF) within the NanoMatFutur programme, grant no. 13N12972. Supercomputer time provided by NERSC (project no. 35687) and the Max-Planck Computing and Data Facility, Garching, is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and G.G. conceived and designed the calculations. E.S. performed the calculations. D.T. conceived and designed the experiments. V.S. and E.J. performed the experiments. The manuscript was written by D.T., G.G. and S.W. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stefan Wippermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scalise, E., Srivastava, V., Janke, E. et al. Surface chemistry and buried interfaces in all-inorganic nanocrystalline solids. Nature Nanotech 13, 841–848 (2018). https://doi.org/10.1038/s41565-018-0189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0189-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing