On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot–photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In 43rd Annual ACM Symposium on Theory of Computing, STOC ’11 333–342 (ACM Press, New York, 2011).

  2. 2.

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

  3. 3.

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

  4. 4.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

  5. 5.

    Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

  6. 6.

    Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

  7. 7.

    Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 11014 (2012).

  8. 8.

    Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

  9. 9.

    Makhonin, M. N. et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano. Lett. 14, 6997–7002 (2014).

  10. 10.

    Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano. Lett. 15, 5208–5213 (2015).

  11. 11.

    Hausmann, B. J. M. et al. Integrated diamond networks for quantum nanophotonics. Nano. Lett. 12, 1578–1582 (2012).

  12. 12.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016).

  13. 13.

    Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

  14. 14.

    He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8, 213–217 (2013).

  15. 15.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

  16. 16.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

  17. 17.

    Wang, H. et al. Near transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

  18. 18.

    Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits. Laser & Photonics Rev. 10, 870–894 (2016).

  19. 19.

    Liu, J. et al. Single self-assembledÿInAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

  20. 20.

    Kalliakos, S. et al. Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot. Appl. Phys. Lett. 109, 151112 (2016).

  21. 21.

    Kiraz, A., Atatüre, M. & Imamoğlu, A. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A. 69, 032305 (2004).

  22. 22.

    Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

  23. 23.

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 13904 (2005).

  24. 24.

    Ota, Y. et al. Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity. Appl. Phys. Lett. 93, 183114 (2008).

  25. 25.

    Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (2005).

  26. 26.

    Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

  27. 27.

    Happ, T. D. et al. Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity. Phys. Rev. B 66, 41303 (2002).

  28. 28.

    Kim, J.-H., Cai, T., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016).

  29. 29.

    Laurent, S. et al. Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity. Appl. Phys. Lett. 87, 163107 (2005).

  30. 30.

    Bentham, C. et al. On-chip electrically controlled routing of photons from a single quantum dot. Appl. Phys. Lett. 106, 221101 (2015).

  31. 31.

    Coles, R. J. et al. Waveguide-coupled photonic crystal cavity for quantum dot spin readout. Opt. Express 22, 2376–2385 (2014).

  32. 32.

    Reithmaier, G. et al. A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors. Appl. Phys. Lett. 105, 081107 (2014).

  33. 33.

    Zibik, E. A. et al. Long lifetimes of quantum-dot inter-sublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009).

  34. 34.

    Berstermann, T. et al. Systematic study of carrier correlations in the electron–hole recombination dynamics of quantum dots. Phys. Rev. B 76, 165318 (2007).

  35. 35.

    Ramsay, A. J. et al. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys. Rev. Lett. 105, 177402 (2010).

  36. 36.

    Melloni, A. et al. Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison. IEEE Photonics J. 2, 181–194 (2010).

  37. 37.

    Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Sub-natural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

  38. 38.

    Proux, R. et al. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 114, 067401 (2015).

  39. 39.

    Bennett, A. J. et al. Cavity-enhanced coherent light scattering from a quantum dot. Sci. Adv. 2, e1501256 (2016).

  40. 40.

    Iles-Smith, J., McCutcheon, D. P. S., Nazir, A. & Mørk, J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photon. 11, 521–526 (2017).

  41. 41.

    Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).

  42. 42.

    Wang, C. F. et al. Optical properties of single InAs quantum dots in close proximity to surfaces. Appl. Phys. Lett. 85, 3423–3425 (2004).

  43. 43.

    Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016).

  44. 44.

    Löbl, M. C. et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode. Phys. Rev. B 96, 165440 (2017).

  45. 45.

    Pernice, W. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

  46. 46.

    Fan, S., Kocaba¸s, E. & Shen, J.-T. Input–output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A. 82, 063821 (2010).

  47. 47.

    Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

Download references


This work was funded by the EPSRC (UK) Programme Grants EP/J007544/1 and EP/N031776/1. The authors thank A. Ul-Haq, J. Iles-Smith, G. Buonaiuto, R. Kirkwood and S. Hughes for helpful discussions.

Author information

Author notes

    • Feng Liu

    Present address: JARA-Institute for Quantum Information, RWTH Aachen University, Aachen, Germany

    • Nikola Prtljaga

    Present address: Gooch & Housego (Torquay), Torquay, UK

  1. These authors contributed equally: Feng Liu, Alistair J. Brash, John O’Hara.


  1. Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

    • Feng Liu
    • , Alistair J. Brash
    • , John O’Hara
    • , Luis M. P. P. Martins
    • , Catherine L. Phillips
    • , Rikki J. Coles
    • , Benjamin Royall
    • , Christopher Bentham
    • , Nikola Prtljaga
    • , Luke R. Wilson
    • , Maurice S. Skolnick
    •  & A. Mark Fox
  2. EPSRC National Epitaxy Facility, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK

    • Edmund Clarke
  3. School of Engineering and Computer Science, University of Hull, Hull, UK

    • Igor E. Itskevich


  1. Search for Feng Liu in:

  2. Search for Alistair J. Brash in:

  3. Search for John O’Hara in:

  4. Search for Luis M. P. P. Martins in:

  5. Search for Catherine L. Phillips in:

  6. Search for Rikki J. Coles in:

  7. Search for Benjamin Royall in:

  8. Search for Edmund Clarke in:

  9. Search for Christopher Bentham in:

  10. Search for Nikola Prtljaga in:

  11. Search for Igor E. Itskevich in:

  12. Search for Luke R. Wilson in:

  13. Search for Maurice S. Skolnick in:

  14. Search for A. Mark Fox in:


F.L. and A.J.B. designed and oversaw the experimental program. A.J.B., L.M.P.P.M. and F.L. developed the DPRF technique and carried out the measurements. J.O’H., L.M.P.P.M., A.J.B. and F.L. performed the SPAD lifetime measurements. J.O’H. and A.J.B. performed the RRS measurements with additional input from N.P.. A.J.B., J.O’H., L.M.P.P.M., F.L. and C.L.P. performed the pulsed correlation measurements. J.O’H. performed the master equation simulations of the system. R.J.C. designed and simulated the photonic structures. C.B. and I.E.I. performed initial characterization of the sample. E.C. grew the quantum dot wafer whilst B.R. fabricated the photonic nanostructures and processed the QD wafer into diodes with assistance from C.B.. L.R.W, I.E.I., M.S.S and A.M.F. provided supervision and expertise. F.L., A.J.B., J.O’H. and A.M.F. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Alistair J. Brash.

Supplementary information

  1. Supplementary Information

    Supplementary Text, Supplementary Figures 1–12

About this article

Publication history