Abstract
On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot–photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In 43rd Annual ACM Symposium on Theory of Computing, STOC ’11 333–342 (ACM Press, New York, 2011).
Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).
Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).
Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).
Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).
Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).
Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 11014 (2012).
Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).
Makhonin, M. N. et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano. Lett. 14, 6997–7002 (2014).
Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano. Lett. 15, 5208–5213 (2015).
Hausmann, B. J. M. et al. Integrated diamond networks for quantum nanophotonics. Nano. Lett. 12, 1578–1582 (2012).
Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016).
Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).
He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8, 213–217 (2013).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).
Wang, H. et al. Near transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).
Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits. Laser & Photonics Rev. 10, 870–894 (2016).
Liu, J. et al. Single self-assembledÿInAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).
Kalliakos, S. et al. Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot. Appl. Phys. Lett. 109, 151112 (2016).
Kiraz, A., Atatüre, M. & Imamoğlu, A. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A. 69, 032305 (2004).
Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).
Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 13904 (2005).
Ota, Y. et al. Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity. Appl. Phys. Lett. 93, 183114 (2008).
Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (2005).
Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).
Happ, T. D. et al. Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity. Phys. Rev. B 66, 41303 (2002).
Kim, J.-H., Cai, T., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016).
Laurent, S. et al. Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity. Appl. Phys. Lett. 87, 163107 (2005).
Bentham, C. et al. On-chip electrically controlled routing of photons from a single quantum dot. Appl. Phys. Lett. 106, 221101 (2015).
Coles, R. J. et al. Waveguide-coupled photonic crystal cavity for quantum dot spin readout. Opt. Express 22, 2376–2385 (2014).
Reithmaier, G. et al. A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors. Appl. Phys. Lett. 105, 081107 (2014).
Zibik, E. A. et al. Long lifetimes of quantum-dot inter-sublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009).
Berstermann, T. et al. Systematic study of carrier correlations in the electron–hole recombination dynamics of quantum dots. Phys. Rev. B 76, 165318 (2007).
Ramsay, A. J. et al. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys. Rev. Lett. 105, 177402 (2010).
Melloni, A. et al. Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison. IEEE Photonics J. 2, 181–194 (2010).
Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Sub-natural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).
Proux, R. et al. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 114, 067401 (2015).
Bennett, A. J. et al. Cavity-enhanced coherent light scattering from a quantum dot. Sci. Adv. 2, e1501256 (2016).
Iles-Smith, J., McCutcheon, D. P. S., Nazir, A. & Mørk, J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photon. 11, 521–526 (2017).
Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).
Wang, C. F. et al. Optical properties of single InAs quantum dots in close proximity to surfaces. Appl. Phys. Lett. 85, 3423–3425 (2004).
Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016).
Löbl, M. C. et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode. Phys. Rev. B 96, 165440 (2017).
Pernice, W. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).
Fan, S., Kocaba¸s, E. & Shen, J.-T. Input–output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A. 82, 063821 (2010).
Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).
Acknowledgements
This work was funded by the EPSRC (UK) Programme Grants EP/J007544/1 and EP/N031776/1. The authors thank A. Ul-Haq, J. Iles-Smith, G. Buonaiuto, R. Kirkwood and S. Hughes for helpful discussions.
Author information
Authors and Affiliations
Contributions
F.L. and A.J.B. designed and oversaw the experimental program. A.J.B., L.M.P.P.M. and F.L. developed the DPRF technique and carried out the measurements. J.O’H., L.M.P.P.M., A.J.B. and F.L. performed the SPAD lifetime measurements. J.O’H. and A.J.B. performed the RRS measurements with additional input from N.P.. A.J.B., J.O’H., L.M.P.P.M., F.L. and C.L.P. performed the pulsed correlation measurements. J.O’H. performed the master equation simulations of the system. R.J.C. designed and simulated the photonic structures. C.B. and I.E.I. performed initial characterization of the sample. E.C. grew the quantum dot wafer whilst B.R. fabricated the photonic nanostructures and processed the QD wafer into diodes with assistance from C.B.. L.R.W, I.E.I., M.S.S and A.M.F. provided supervision and expertise. F.L., A.J.B., J.O’H. and A.M.F. wrote the manuscript with input from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Text, Supplementary Figures 1–12
Rights and permissions
About this article
Cite this article
Liu, F., Brash, A.J., O’Hara, J. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotech 13, 835–840 (2018). https://doi.org/10.1038/s41565-018-0188-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-018-0188-x
This article is cited by
-
Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects
Nature Communications (2024)
-
Quantum topological photonics with special focus on waveguide systems
npj Nanophotonics (2024)
-
Single photon emitter deterministically coupled to a topological corner state
Light: Science & Applications (2024)
-
Dynamic resonance fluorescence in solid-state cavity quantum electrodynamics
Nature Photonics (2024)
-
Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths
Nature Communications (2024)