Manipulating a quantum state via electrostatic gating has been of great importance for many model systems in nanoelectronics. Until now, however, controlling the electron spins or, more specifically, the magnetism of a system by electric-field tuning has proven challenging1,2,3,4. Recently, atomically thin magnetic semiconductors have attracted significant attention due to their emerging new physical phenomena5,6,7,8,9,10,11,12,13. However, many issues are yet to be resolved to convincingly demonstrate gate-controllable magnetism in these two-dimensional materials. Here, we show that, via electrostatic gating, a strong field effect can be observed in devices based on few-layered ferromagnetic semiconducting Cr2Ge2Te6. At different gate doping, micro-area Kerr measurements in the studied devices demonstrate bipolar tunable magnetization loops below the Curie temperature, which is tentatively attributed to the moment rebalance in the spin-polarized band structure. Our findings of electric-field-controlled magnetism in van der Waals magnets show possibilities for potential applications in new-generation magnetic memory storage, sensors and spintronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

  2. 2.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

  3. 3.

    Lin, M.W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C 4, 315–322 (2016).

  4. 4.

    Xing, W. et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater. 4, 024009 (2017).

  5. 5.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

  6. 6.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

  7. 7.

    Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Preprint at https://arxiv.org/abs/1801.08188 (2018).

  8. 8.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

  9. 9.

    Song, T. C. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

  10. 10.

    Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).

  11. 11.

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation ofexperimentally known compounds. Nat. Nanotech. 13, 246–252 (2018).

  12. 12.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotech. 13, 289–293 (2018).

  13. 13.

    Arai, M. et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layereddichalcogenide. Appl. Phys. Lett. 107, 103107 (2015).

  14. 14.

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

  15. 15.

    Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 10, 853–856 (2011).

  16. 16.

    Weisheit, M. Electric Field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

  17. 17.

    Shimamura, K. et al. Electrical control of Curie temperature in cobalt using an ionic liquid film. Appl. Phys. Lett. 100, 122402 (2012).

  18. 18.

    Wang, W. G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunneljunctions. Nat. Mater. 11, 64–68 (2012).

  19. 19.

    Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

  20. 20.

    Wang, Y. Y. et al. Electrical control of the exchange spring in antiferromagnetic metals. Adv. Mater. 27, 3196–3201 (2015).

  21. 21.

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

  22. 22.

    Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in aferromagnetic semiconductor. Science 301, 943–945 (2003).

  23. 23.

    Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect andBerry’s phase in graphene. Nature 438, 201–204 (2005).

  24. 24.

    Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

  25. 25.

    Yuan, H. T. et al. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistorsbased on oxide semiconductors. J. Am. Chem. Soc. 132, 18402–18407 (2010).

  26. 26.

    Guo, T. et al. Multiple structure and symmetry types in narrow temperature and magnetic field ranges intwo-dimensional Cr2Ge2Te6 crystal. Preprint at https://arxiv.org/abs/1803.06113 (2018).

  27. 27.

    Stöhr, J. & Siegmann, H. C. Magnetism from Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006).

  28. 28.

    Jiang, S. W., Li, L. Z., Wang, Z. F., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotech. https://doi.org/10.1038/s41565-018-0135-x (2018).

  29. 29.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotech. https://doi.org/10.1038/s41565-018-0121-3.

  30. 30.

    Deng, Y. J. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Preprint at https://arxiv.org/abs/1803.02038 (2018).

  31. 31.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a planewavebasis set. Phys. Rev. B. 54, 11169 (1996).

  32. 32.

    Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interactionparameters in the LDA+U method. Phys. Rev. B. 71, 035105 (2005).

  33. 33.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

  34. 34.

    Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

Download references


This work was supported by the National Key R&D Program of China (2017YFA0206302) and by the National Natural Science Foundation of China (NSFC; grants 11504385 and 51627801). Z.Z. acknowledges support from the NSFC (grant 51331006) and the CAS (project KJZD-EW-M05-3). T.Y. acknowledges support from the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation, NSFC and CASC (grant U1537204). The work in Shanxi University was supported financially by the NSFC (grant 61574087) and the Fund for Shanxi ‘1331 Project’ Key Subjects Construction (1331KSC). D.S. acknowledges support from the NSFC (grants 51272256, 61422406 and 61574143) and MSTC (grant 2016YFB04001100). S.O. acknowledges support from Grants-in-Aid for Scientific Research (S) (25220604) and LANEF. The authors are grateful for discussions with H. Yuan.

Author information

Author notes

  1. These authors contributed equally: Zhi Wang, Tongyao Zhang, Mei Ding, Baojuan Dong.


  1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

    • Zhi Wang
    • , Baojuan Dong
    • , Maolin Chen
    • , Xiaoxi Li
    • , Jianqi Huang
    • , Hanwen Wang
    • , Xiaotian Zhao
    • , Yong Li
    • , Da Li
    • , Dongming Sun
    • , Teng Yang
    • , Zheng Han
    •  & Zhidong Zhang
  2. School of Material Science and Engineering, University of Science and Technology of China, Anhui, China

    • Zhi Wang
    • , Baojuan Dong
    • , Maolin Chen
    • , Xiaoxi Li
    • , Jianqi Huang
    • , Hanwen Wang
    • , Xiaotian Zhao
    • , Yong Li
    • , Da Li
    • , Dongming Sun
    • , Teng Yang
    • , Zheng Han
    •  & Zhidong Zhang
  3. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, China

    • Tongyao Zhang
    • , Yanxu Li
    • , Yuansen Chen
    •  & Jing Zhang
  4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China

    • Tongyao Zhang
    • , Yanxu Li
    • , Yuansen Chen
    •  & Jing Zhang
  5. College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, China

    • Mei Ding
    •  & Chuankun Jia
  6. State Key Laboratory of Mechanical Transmission, School of Materials Science and Engineering, Chongqing University, Chongqing, China

    • Lidong Sun
  7. College of Sciences, Liaoning Shihua University, Fushun, China

    • Huaihong Guo
  8. State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing, China

    • Yu Ye
  9. Collaborative Innovation Center of Quantum Matter, Beijing, China

    • Yu Ye
  10. Central Research Institute of Electric Power Industry (CRIEPI), Materials Science Research Laboratory, Yokosuka, Kanagawa, Japan

    • Shimpei Ono


  1. Search for Zhi Wang in:

  2. Search for Tongyao Zhang in:

  3. Search for Mei Ding in:

  4. Search for Baojuan Dong in:

  5. Search for Yanxu Li in:

  6. Search for Maolin Chen in:

  7. Search for Xiaoxi Li in:

  8. Search for Jianqi Huang in:

  9. Search for Hanwen Wang in:

  10. Search for Xiaotian Zhao in:

  11. Search for Yong Li in:

  12. Search for Da Li in:

  13. Search for Chuankun Jia in:

  14. Search for Lidong Sun in:

  15. Search for Huaihong Guo in:

  16. Search for Yu Ye in:

  17. Search for Dongming Sun in:

  18. Search for Yuansen Chen in:

  19. Search for Teng Yang in:

  20. Search for Jing Zhang in:

  21. Search for Shimpei Ono in:

  22. Search for Zheng Han in:

  23. Search for Zhidong Zhang in:


Z.H. and Z.Z. conceived the experiment and supervised the overall project. Z.W., X.L. and Y.Y. fabricated the samples. Z.W., T.Z., Ya.L., Y.C. and Z.H. carried out experimental measurements. S.O. provided the ionic liquid and advised on the experiment. B.D., J.H. and T.Y. conducted the theoretical simulations. Z.H., M.D., T.Z., T.Y. and Y.C. analysed the data. The manuscript was written by Z.H., Y.C. and T.Y. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Yuansen Chen or Teng Yang or Zheng Han.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–23

About this article

Publication history