Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries

Subjects

An Author Correction to this article was published on 04 October 2018

This article has been updated

Abstract

Rechargeable Li-metal batteries using high-voltage cathodes can deliver the highest possible energy densities among all electrochemistries. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Here, we report a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Our battery shows high cycling stability, as evidenced by the efficiencies for Li-metal plating/stripping (99.2%) for a 5 V cathode LiCoPO4 (~99.81%) and a Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode (~99.93%). At a loading of 2.0 mAh cm−2, our full cells retain ~93% of their original capacities after 1,000 cycles. Surface analyses and quantum chemistry calculations show that stabilization of these aggressive chemistries at extreme potentials is due to the formation of a several-nanometre-thick fluorinated interphase.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Electrochemical properties for different electrolytes.
Fig. 2: Scanning electron microscopy of Li-metal morphology after 100 cycles in different electrolytes at a current density of 0.5 mA cm−2.
Fig. 3: Electrochemical performances of LMBs using NMC811 and LCP as cathode materials.
Fig. 4: Electrochemical performance of Li||NMC811 batteries (with onefold Li excess) using 1 M LiPF6 FEC/FEMC/HFE electrolyte.
Fig. 5: Calculated reduction/oxidation stability of electrolyte solvents and surface analyses performed on cycled Li-metal anode and LCP cathodes.
Fig. 6: Reactivity of EC, FEC, FEMC and HFE solvents at the fully charged CoPO4 (010) surface from PBE + U DFT calculations.

Change history

  • 04 October 2018

    In the version of this Article originally published, in the first paragraph of the Methods, HFE was incorrectly given as 2,2,2-Trifluoroethyl-3ʹ,3ʹ,3ʹ,2ʹ,2ʹ-pentafluoropropyl ether; it should have been 1,1,2,2-tetrafluoroethyl-2ʹ,2ʹ,2ʹ-trifluoroethyl ether. This has now been corrected in the online versions of the Article.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    CAS  Google Scholar 

  3. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    CAS  Google Scholar 

  4. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    CAS  Google Scholar 

  5. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009).

    Google Scholar 

  6. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).

    CAS  Google Scholar 

  7. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    CAS  Google Scholar 

  8. Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    CAS  Google Scholar 

  9. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    CAS  Google Scholar 

  10. Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and Coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

    CAS  Google Scholar 

  11. Jeong, S. K. et al. Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. Commun. 10, 635–638 (2008).

    CAS  Google Scholar 

  12. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    CAS  Google Scholar 

  13. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    CAS  Google Scholar 

  14. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Google Scholar 

  15. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    CAS  Google Scholar 

  16. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    CAS  Google Scholar 

  17. Cheng, X. B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium-ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).

    CAS  Google Scholar 

  18. Erickson, E. M. et al. Review—development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc. 162, A2424–A2438 (2015).

    CAS  Google Scholar 

  19. Li, J., Downie, L. E., Ma, L., Qiu, W. & Dahn, J. R. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. J. Electrochem. Soc. 162, A1401–A1408 (2015).

    CAS  Google Scholar 

  20. Ma, J., Hu, P., Cui, G. & Chen, L. Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 28, 3578–3606 (2016).

    CAS  Google Scholar 

  21. Arumugam, R. S. et al. Special synergy between electrolyte additives and positive electrode surface coating to enhance the performance of Li[Ni0.6Mn0.2Co0.2]O2/graphite cells. J. Electrochem. Soc. 163, A2531–A2538 (2016).

    CAS  Google Scholar 

  22. Bramnik, N. N., Nikolowski, K., Baehtz, C. K., Bramnik, G. & Ehrenberg, H. Phase transitions occurring upon lithium insertion–extraction of LiCoPO4. Chem. Mater. 19, 908–915 (2007).

    CAS  Google Scholar 

  23. Duncan, H., Abu-Lebdeh, Y. & Davidson, I. J. Study of the cathode–electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol–gel method for Li-ion batteries. J. Electrochem. Soc. 157, A528–A535 (2010).

    CAS  Google Scholar 

  24. Zhang, X. Q., Cheng, X. B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Google Scholar 

  25. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    CAS  Google Scholar 

  26. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    CAS  Google Scholar 

  27. Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018).

    CAS  Google Scholar 

  28. Zhang, Z. et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6, 1806–1810 (2013).

    CAS  Google Scholar 

  29. Xia, J. et al. Fluorinated electrolyte for 4.5 V Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. J. Power Sources 307, 340–350 (2016).

    CAS  Google Scholar 

  30. Li, J. et al. The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes. J. Electrochem. Soc. 164, A655–A665 (2017).

    CAS  Google Scholar 

  31. Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015).

    CAS  Google Scholar 

  32. Myung, S. T. et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017).

    CAS  Google Scholar 

  33. Wolfenstine, J., Lee, U., Poese, B. & Allen, J. L. Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J. Power Sources 144, 226–230 (2005).

    CAS  Google Scholar 

  34. Liu, J. et al. Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. J. Mater. Chem. 21, 9984–9987 (2011).

    CAS  Google Scholar 

  35. Sharabi, R. et al. Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes. Electrochem. Commun. 28, 20–23 (2013).

    CAS  Google Scholar 

  36. Leung, K., Soto, F., Hankins, K., Balbuena, P. B. & Harrison, K. L. Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces. J. Phys. Chem. C 120, 6302–6313 (2016).

    CAS  Google Scholar 

  37. Tasaki, K. et al. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J. Electrochem. Soc. 156, A1019–A1027 (2009).

    CAS  Google Scholar 

  38. Cheng, X. B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2015).

    Google Scholar 

  39. Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).

    CAS  Google Scholar 

  40. Zhang, Q. et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16, 2011–2016 (2016).

    CAS  Google Scholar 

  41. Leung, K. Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries. J. Phys. Chem. C 117, 1539–1547 (2013).

    CAS  Google Scholar 

  42. Liu, Z. et al. Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016).

    CAS  Google Scholar 

  43. Borodin, O., Olguin, M., Spear, C. E., Leiter, K. & Knap, J. Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26, 354003 (2015).

    Google Scholar 

  44. Kumar, N., Leung, K. & Siegel, D. J. Crystal surface and state of charge dependencies of electrolyte decomposition on LiMn2O4 cathode. J. Electrochem. Soc. 161, E3059–E3065 (2014).

    CAS  Google Scholar 

  45. Giordano, L. et al. Chemical reactivity descriptor for the oxide–electrolyte interface in Li-ion batteries. J. Phys. Chem. Lett. 8, 3881–3887 (2017).

    CAS  Google Scholar 

  46. Leung, K. First-principles modeling of Mn(ii) migration above and dissolution from LixMn2O4 (001) surfaces. Chem. Mater. 29, 2550–2562 (2017).

    CAS  Google Scholar 

  47. Xu, K., Zhang, S., Allen, J. L. & Jow, T. R. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J. Electrochem. Soc. 149, A1079–A1082 (2002).

    CAS  Google Scholar 

  48. Nagasubramanian, G. & Orendorff, C. J. Hydrofluoroether electrolytes for lithium-ion batteries: reduced gas decomposition and nonflammable. J. Power Sources 196, 8604–8609 (2011).

    CAS  Google Scholar 

  49. Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    CAS  Google Scholar 

  50. Delp, S. A. et al. Importance of reduction and oxidation stability of high voltage electrolytes and additives. Electrochim. Acta 209, 498–510 (2016).

    CAS  Google Scholar 

  51. Allen, J. L., Jow, T. R. & Wolfenstine, J. Improved cycle life of Fe-substituted LiCoPO4. J. Power Sources 196, 8656–8661 (2011).

    CAS  Google Scholar 

  52. Frisch, M. J. et al. Gaussian 09, Revision C (Gaussian, Inc., 2010).

  53. Borodin, O., Behl, W. & Jow, T. R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. J. Phys. Chem. C 117, 8661–8682 (2013).

    CAS  Google Scholar 

  54. Borodin, O. in Electrolytes for Lithium and Lithium-Ion Batteries Vol. 58 (eds Jow, T. R. et al.) Ch. 8 (Springer, New York, NY, 2014).

  55. Gomer, R. & Tryson, G. An experimental determination of absolute half-cell emf’s and single ion free energies of solvation. J. Chem. Phys. 66, 4413–4424 (1977).

    CAS  Google Scholar 

  56. Trasatti, S. The absolute electrode potential—an explanatory note (Recommendations 1986). Pure Appl. Chem. 58, 955–966 (1986).

    CAS  Google Scholar 

  57. Lin, C. Y., Hodgson, J. L., Namazian, M. & Coote, M. L. Comparison of G3 and G4 theories for radical addition and abstraction reactions. J. Phys. Chem. A 113, 3690–3697 (2009).

    CAS  Google Scholar 

  58. Curtiss, L. A., Redfern, P. C. & Raghavachari, K. G n theory. WIRES Comput. Mol. Sci. 1, 810–825 (2011).

    CAS  Google Scholar 

  59. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Google Scholar 

  60. Barnes, T. A., Kaminski, J. W., Borodin, O. & Miller, T. F. Ab initio characterization of the electrochemical stability and solvation properties of condensed-phase ethylene carbonate and dimethyl carbonate mixtures. J. Phys. Chem. C 119, 3865–3880 (2015).

    CAS  Google Scholar 

  61. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    CAS  Google Scholar 

  62. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  63. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  64. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  65. Paier, J., Marsman, M. & Kresse, G. Why does the B3LYP hybrid functional fail for metals?. J. Chem. Phys. 127, 024103 (2007).

    Google Scholar 

  66. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple (vol. 77, p. 3865, 1996). Phys. Rev. Lett. 78, 1396–1396 (1997).

    CAS  Google Scholar 

  67. Johannes, M., Hoang, D. K., Allen, J. L. & Gaskell, K. Hole polaron formation and migration in olivine phosphate materials. Phys. Rev. B 85, 115106 (2012).

    Google Scholar 

  68. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 70, 235121 (2004).

    Google Scholar 

  69. Wang, L., Zhou, F., Meng, Y. S. & Ceder, G. First-principles study of surface properties of LiFePO4: surface energy, structure, Wulff shape, and surface redox potential. Phys. Rev. B 76, 165435 (2007).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE) under award no. DEEE0008202 and DEEE0008200. The support of the Maryland NanoCenter and its AIM Lab is acknowledged. The authors thank K. Pupek and G. Krumdick for providing one of the fluorinated solvents, and B. Dunn for constructive discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.F. and L.C designed the experiments and analysed data. O.B. conducted the calculations. X.F., L.C., X.J., J.C., S.H., T.D., J.Z. and C.Y. conducted electrochemical experiments. X.F. and S.-C.L. performed the TEM analysis. K.A., K.X. and C.W. conceived and supervised the project. All authors contributed to interpretation of the results.

Corresponding authors

Correspondence to Khalil Amine, Kang Xu or Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–39; Supplementary Tables 1–3; Supplementary Notes 1–2

Supplementary Video 1

Flammable test for the electrolyte of 1 M LiFSI-DME

Supplementary Video 2

Flammable test for the electrolyte of 1 M LiPF6-EC/DMC

Supplementary Video 3

Flammable test for the electrolyte of 1 M LiPF6-FEC/DMC

Supplementary Video 4

Flammable test for the electrolyte of 1 M LiPF6-FEC/FEMC/HFE

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Chen, L., Borodin, O. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotech 13, 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0183-2

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research