Spatially tailored pseudo-magnetic fields (PMFs) can give rise to pseudo-Landau levels and the valley Hall effect in graphene. At an experimental level, it is highly challenging to create the specific strain texture that can generate PMFs over large areas. Here, we report that superposing graphene on multilayer black phosphorus creates shear-strained superlattices that generate a PMF over an entire graphene–black phosphorus heterostructure with edge size of tens of micrometres. The PMF is intertwined with the spatial period of the moiré pattern, and its spatial distribution and intensity can be modified by changing the relative orientation of the two materials. We show that the emerging pseudo-Landau levels influence the transport properties of graphene–black phosphorus field-effect transistor devices with Hall bar geometry. The application of an external magnetic field allows us to enhance or reduce the effective field depending on the valley polarization with the prospect of developing a valley filter.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

  2. 2.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

  3. 3.

    de Juan, F., Mañes, J. L. & Vozmediano, M. A. Gauge fields from strain in graphene. Phys. Rev. B 87, 165131 (2013).

  4. 4.

    Vozmediano, M. A. H., Katsnelson, M. I. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).

  5. 5.

    Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010).

  6. 6.

    Low, T. & Guinea, F. Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett. 10, 3551–3554 (2010).

  7. 7.

    Guinea, F., Horovitz, B. & Le Doussal, P. Gauge field induced by ripples in graphene. Phys. Rev. B 77, 205421 (2008).

  8. 8.

    Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

  9. 9.

    Jiang, Y. et al. Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass. Nano Lett. 17, 2839–2843 (2017).

  10. 10.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

  11. 11.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  12. 12.

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

  13. 13.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

  14. 14.

    Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

  15. 15.

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotech. 9, 808–813 (2014).

  16. 16.

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronic. Nat. Commun. 5, 4458 (2014).

  17. 17.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

  18. 18.

    Appalakondaiah, S., Vaitheeswaran, G., Lebegue, S., Christensen, N. E. & Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86, 035105 (2012).

  19. 19.

    Wu, J. et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 127, 2396–2399 (2015).

  20. 20.

    Pereira, V. M. & Castro Neto, A. H. Strain engineering of graphene's electronic structure. Phys. Rev. Lett. 103, 046801 (2009).

  21. 21.

    Artaud, A. et al. Universal classification of twisted, strained and sheared graphene moiré superlattices. Sci. Rep. 6, 25670 (2016).

  22. 22.

    Park, C.-H., Yang, L., Son, Y.-W., Cohen, M. L. & Louie, S. G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys. 4, 213–217 (2008).

  23. 23.

    Yoon, D. et al. Strong polarization dependence of double-resonant Raman intensities in graphene. Nano Lett. 8, 4270–4274 (2008).

  24. 24.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech. 8, 235–246 (2013).

  25. 25.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

  26. 26.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

  27. 27.

    Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).

  28. 28.

    Li, S. Y. et al. Observation of unconventional splitting of Landau levels in strained graphene. Phys. Rev. B 92, 245302 (2015).

  29. 29.

    Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185 (2010).

  30. 30.

    Gibertini, M., Tomadin, A., Polini, M., Fasolino, A. & Katsnelson, M. I. Electron density distribution and screening in rippled graphene sheets. Phys. Rev. B 81, 125437 (2010).

  31. 31.

    Castro, E. V., Cazalilla, M. A. & Vozmediano, M. A. Raise and collapse of pseudo Landau levels in graphene. Phys. Rev. B 96, 241405 (2017).

  32. 32.

    Slotman, G. J. et al. Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride. Phys. Rev. Lett. 115, 186801 (2015).

  33. 33.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

  34. 34.

    Müller, J. E. Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys. Rev. Lett. 68, 385–388 (1992).

  35. 35.

    Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193 (2011).

  36. 36.

    Weiss, D., von Klitzing, K., Ploog, K. & Weimann, G. Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential. Europhys. Lett. 8, 179–184 (1989).

  37. 37.

    Peeters, F. M. & Vasilopoulos, P. Quantum transport of a two-dimensional electron gas in a spatially modulated magnetic field. Phys. Rev. B 47, 1466 (1993).

  38. 38.

    Carmona, H. A. et al. Two dimensional electrons in a lateral magnetic superlattice. Phys. Rev. Lett. 74, 3009 (1995).

  39. 39.

    Matulis, A. & Peeters, F. M. Appearance of enhanced Weiss oscillations in graphene: Theory. Phys. Rev. B 75, 125429 (2007).

  40. 40.

    Roy, B., Hu, Z. X. & Yang, K. Theory of unconventional quantum Hall effect in strained graphene. Phys. Rev. B 87, 121408 (2013).

Download references


The authors thank L. Xin and Q. Su Ying for valuable suggestions. K.P.L. and S.A. acknowledge support from the Singapore Ministry of Education AcRF Tier 2 (MOE2017-T2-2-140).

Author information


  1. Department of Chemistry, National University of Singapore, Singapore, Singapore

    • Yanpeng Liu
    • , Linjun Li
    • , Yang Bao
    • , Hai Xu
    • , Jiong Lu
    •  & Kian Ping Loh
  2. Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore

    • Yanpeng Liu
    • , J. N. B. Rodrigues
    • , Linjun Li
    • , Alexandra Carvalho
    • , Ming Yang
    • , Evan Laksono
    • , Junpeng Lu
    • , Yang Bao
    • , Hai Xu
    • , Chorng Haur Sow
    • , Yuan Ping Feng
    • , A. H. Castro Neto
    • , Shaffique Adam
    • , Jiong Lu
    •  & Kian Ping Loh
  3. Department of Physics, National University of Singapore, Singapore, Singapore

    • J. N. B. Rodrigues
    • , Yong Zheng Luo
    • , Alexandra Carvalho
    • , Ming Yang
    • , Evan Laksono
    • , Junpeng Lu
    • , Chorng Haur Sow
    • , Yuan Ping Feng
    • , A. H. Castro Neto
    •  & Shaffique Adam
  4. Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore

    • Ming Yang
  5. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore

    • Sherman J. R. Tan
    •  & Zhizhan Qiu
  6. Yale-NUS College, Singapore, Singapore

    • Shaffique Adam


  1. Search for Yanpeng Liu in:

  2. Search for J. N. B. Rodrigues in:

  3. Search for Yong Zheng Luo in:

  4. Search for Linjun Li in:

  5. Search for Alexandra Carvalho in:

  6. Search for Ming Yang in:

  7. Search for Evan Laksono in:

  8. Search for Junpeng Lu in:

  9. Search for Yang Bao in:

  10. Search for Hai Xu in:

  11. Search for Sherman J. R. Tan in:

  12. Search for Zhizhan Qiu in:

  13. Search for Chorng Haur Sow in:

  14. Search for Yuan Ping Feng in:

  15. Search for A. H. Castro Neto in:

  16. Search for Shaffique Adam in:

  17. Search for Jiong Lu in:

  18. Search for Kian Ping Loh in:


K.P.L. supervised the project. Y.L., K.P.L. and J.L. designed and performed the experiments. J.N.B.R., Y.Z.L. and E.L. performed calculations under the supervision of S.A. and Y.P.F. Y.L. and L.L. fabricated and measured the G–BP FET device. A.C. and M.Y. carried out DFT calculations under the supervision of A.H.C.N. and Y.P.F. J.L. helped to collect and analyse angle-resolved Raman experimental data under the supervision of C.H.S. H.X. Y.B. and Z.Q. helped to collect and analyse STM data. S.J.R.T. provided support for XPS and ARPES experiments. Y.L. and K.P.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Shaffique Adam or Jiong Lu or Kian Ping Loh.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–23

About this article

Publication history