Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure


Spatially tailored pseudo-magnetic fields (PMFs) can give rise to pseudo-Landau levels and the valley Hall effect in graphene. At an experimental level, it is highly challenging to create the specific strain texture that can generate PMFs over large areas. Here, we report that superposing graphene on multilayer black phosphorus creates shear-strained superlattices that generate a PMF over an entire graphene–black phosphorus heterostructure with edge size of tens of micrometres. The PMF is intertwined with the spatial period of the moiré pattern, and its spatial distribution and intensity can be modified by changing the relative orientation of the two materials. We show that the emerging pseudo-Landau levels influence the transport properties of graphene–black phosphorus field-effect transistor devices with Hall bar geometry. The application of an external magnetic field allows us to enhance or reduce the effective field depending on the valley polarization with the prospect of developing a valley filter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of G–BP device.
Fig. 2: Angle-dependent moiré superlattices.
Fig. 3: Spatial pseudo-magnetic field texture and θ-dependent strain.
Fig. 4: Structural and electronic properties of G–BP heterostructure.
Fig. 5: Angle-dependence of STS spectra and pseudo-magnetic fields.
Fig. 6: Transport data of a G–BP (thickness ~8 nm) device with Hall bar geometry.


  1. 1.

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  Google Scholar 

  2. 2.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  3. 3.

    de Juan, F., Mañes, J. L. & Vozmediano, M. A. Gauge fields from strain in graphene. Phys. Rev. B 87, 165131 (2013).

    Article  Google Scholar 

  4. 4.

    Vozmediano, M. A. H., Katsnelson, M. I. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).

    Article  Google Scholar 

  5. 5.

    Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010).

    Article  Google Scholar 

  6. 6.

    Low, T. & Guinea, F. Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett. 10, 3551–3554 (2010).

    Article  Google Scholar 

  7. 7.

    Guinea, F., Horovitz, B. & Le Doussal, P. Gauge field induced by ripples in graphene. Phys. Rev. B 77, 205421 (2008).

    Article  Google Scholar 

  8. 8.

    Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  Google Scholar 

  9. 9.

    Jiang, Y. et al. Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass. Nano Lett. 17, 2839–2843 (2017).

    Article  Google Scholar 

  10. 10.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  Google Scholar 

  11. 11.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  12. 12.

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  Google Scholar 

  13. 13.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  Google Scholar 

  14. 14.

    Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  Google Scholar 

  15. 15.

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotech. 9, 808–813 (2014).

    Article  Google Scholar 

  16. 16.

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronic. Nat. Commun. 5, 4458 (2014).

    Article  Google Scholar 

  17. 17.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    Article  Google Scholar 

  18. 18.

    Appalakondaiah, S., Vaitheeswaran, G., Lebegue, S., Christensen, N. E. & Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86, 035105 (2012).

    Article  Google Scholar 

  19. 19.

    Wu, J. et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 127, 2396–2399 (2015).

    Article  Google Scholar 

  20. 20.

    Pereira, V. M. & Castro Neto, A. H. Strain engineering of graphene's electronic structure. Phys. Rev. Lett. 103, 046801 (2009).

    Article  Google Scholar 

  21. 21.

    Artaud, A. et al. Universal classification of twisted, strained and sheared graphene moiré superlattices. Sci. Rep. 6, 25670 (2016).

    Article  Google Scholar 

  22. 22.

    Park, C.-H., Yang, L., Son, Y.-W., Cohen, M. L. & Louie, S. G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys. 4, 213–217 (2008).

    Article  Google Scholar 

  23. 23.

    Yoon, D. et al. Strong polarization dependence of double-resonant Raman intensities in graphene. Nano Lett. 8, 4270–4274 (2008).

    Article  Google Scholar 

  24. 24.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech. 8, 235–246 (2013).

    Article  Google Scholar 

  25. 25.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  Google Scholar 

  26. 26.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  27. 27.

    Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).

    Article  Google Scholar 

  28. 28.

    Li, S. Y. et al. Observation of unconventional splitting of Landau levels in strained graphene. Phys. Rev. B 92, 245302 (2015).

    Article  Google Scholar 

  29. 29.

    Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185 (2010).

    Article  Google Scholar 

  30. 30.

    Gibertini, M., Tomadin, A., Polini, M., Fasolino, A. & Katsnelson, M. I. Electron density distribution and screening in rippled graphene sheets. Phys. Rev. B 81, 125437 (2010).

    Article  Google Scholar 

  31. 31.

    Castro, E. V., Cazalilla, M. A. & Vozmediano, M. A. Raise and collapse of pseudo Landau levels in graphene. Phys. Rev. B 96, 241405 (2017).

    Article  Google Scholar 

  32. 32.

    Slotman, G. J. et al. Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride. Phys. Rev. Lett. 115, 186801 (2015).

    Article  Google Scholar 

  33. 33.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Article  Google Scholar 

  34. 34.

    Müller, J. E. Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys. Rev. Lett. 68, 385–388 (1992).

    Article  Google Scholar 

  35. 35.

    Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193 (2011).

    Article  Google Scholar 

  36. 36.

    Weiss, D., von Klitzing, K., Ploog, K. & Weimann, G. Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential. Europhys. Lett. 8, 179–184 (1989).

    Article  Google Scholar 

  37. 37.

    Peeters, F. M. & Vasilopoulos, P. Quantum transport of a two-dimensional electron gas in a spatially modulated magnetic field. Phys. Rev. B 47, 1466 (1993).

    Article  Google Scholar 

  38. 38.

    Carmona, H. A. et al. Two dimensional electrons in a lateral magnetic superlattice. Phys. Rev. Lett. 74, 3009 (1995).

    Article  Google Scholar 

  39. 39.

    Matulis, A. & Peeters, F. M. Appearance of enhanced Weiss oscillations in graphene: Theory. Phys. Rev. B 75, 125429 (2007).

    Article  Google Scholar 

  40. 40.

    Roy, B., Hu, Z. X. & Yang, K. Theory of unconventional quantum Hall effect in strained graphene. Phys. Rev. B 87, 121408 (2013).

    Article  Google Scholar 

Download references


The authors thank L. Xin and Q. Su Ying for valuable suggestions. K.P.L. and S.A. acknowledge support from the Singapore Ministry of Education AcRF Tier 2 (MOE2017-T2-2-140).

Author information




K.P.L. supervised the project. Y.L., K.P.L. and J.L. designed and performed the experiments. J.N.B.R., Y.Z.L. and E.L. performed calculations under the supervision of S.A. and Y.P.F. Y.L. and L.L. fabricated and measured the G–BP FET device. A.C. and M.Y. carried out DFT calculations under the supervision of A.H.C.N. and Y.P.F. J.L. helped to collect and analyse angle-resolved Raman experimental data under the supervision of C.H.S. H.X. Y.B. and Z.Q. helped to collect and analyse STM data. S.J.R.T. provided support for XPS and ARPES experiments. Y.L. and K.P.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Shaffique Adam or Jiong Lu or Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–23

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Rodrigues, J.N.B., Luo, Y.Z. et al. Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure. Nature Nanotech 13, 828–834 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research