Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pathway-controlled formation of mesostructured all-DNA colloids and superstructures

Abstract

DNA has traditionally been used for the programmable design of nanostructures by exploiting its sequence-defined supramolecular recognition. However, control on larger length scales or even hierarchical materials that translate to the macroscale remain difficult to construct. Here, we show that the polymer character of single-stranded DNA (ssDNA) can be activated via a nucleobase-specific lower critical solution temperature, which provides a unique access to mesoscale structuring mechanisms on larger length scales. We integrate both effects into ssDNA multiblock copolymers that code sequences for phase separation, hybridization and functionalization. Kinetic pathway guidance using temperature ramps balances the counteracting mesoscale phase separation during heating with nanoscale duplex recognition during cooling to yield a diversity of complex all-DNA colloids with control over the internal dynamics and of their superstructures. Our approach provides a facile and versatile platform to add mesostructural layers into hierarchical all-DNA materials. The high density of addressable ssDNA blocks opens routes for applications such as gene delivery, artificial evolution or spatially encoded (bio)materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinetic pathway guidance towards multilevel control of hierarchical all-DNA structures exploiting competing interactions.
Fig. 2: LCST behaviour of ssDNA.
Fig. 3: Pathway-controlled formation of tunable and addressable metastable all-DNA microgel architectures.
Fig. 4: Control over microgel size and physical state in protocell-like particles.
Fig. 5: Single-step capsule formation via matching the dynamics of core–shell hybridization and core dissolution during cooling.
Fig. 6: Supraparticulate assemblies, cellular hydrogels and light-triggered hybrid DNA/Au-NP colloids.

Similar content being viewed by others

References

  1. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  2. Tschierske, C. Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed. 52, 8828–8878 (2013).

    Article  CAS  Google Scholar 

  3. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  4. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  5. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  6. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  CAS  Google Scholar 

  7. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article  CAS  Google Scholar 

  8. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotech. 4, 249–254 (2009).

    Article  CAS  Google Scholar 

  9. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  10. Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  11. Edwardson, T. G. W., Carneiro, K. M. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat. Chem. 5, 868–875 (2013).

    Article  CAS  Google Scholar 

  12. Schnitzler, T. & Herrmann, A. DNA block copolymers: functional materials for nanoscience and biomedicine. Acc. Chem. Res. 45, 1419–1430 (2012).

    Article  CAS  Google Scholar 

  13. Alemdaroglu, F. E. & Herrmann, A. DNA meets synthetic polymers—highly versatile hybrid materials. Org. Biomol. Chem. 5, 1311–1320 (2007).

    Article  CAS  Google Scholar 

  14. Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).

    Article  CAS  Google Scholar 

  15. Liao, W.-C. & Willner, I. Synthesis and applications of stimuli-responsive DNA-based nano- and micro-sized capsules. Adv. Funct. Mater. 27, 1702732 (2017).

    Article  CAS  Google Scholar 

  16. Lee, J. B., Hong, J., Bonner, D. K., Poon, Z. & Hammond, P. T. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat. Mater. 11, 316–322 (2012).

    Article  CAS  Google Scholar 

  17. Ducrot, E., He, M., Yi, G. R. & Pine, D. J. Colloidal alloys with preassembled clusters and spheres. Nat. Mater. 16, 652–657 (2017).

    Article  CAS  Google Scholar 

  18. Qi, H. et al. DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun. 4, 2275 (2013).

    Article  CAS  Google Scholar 

  19. Zelikin, A. N. et al. A general approach for DNA encapsulation in degradable polymer microcapsules. ACS Nano 1, 63–69 (2007).

    Article  CAS  Google Scholar 

  20. Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

    Article  CAS  Google Scholar 

  21. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article  CAS  Google Scholar 

  22. Groeschel, A. H. et al. Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 3, 710 (2012).

    Article  CAS  Google Scholar 

  23. Bates, F. S. Polymer–polymer phase-behavior. Science 251, 898–905 (1991).

    Article  CAS  Google Scholar 

  24. Qiu, H. B., Hudson, Z. M., Winnik, M. A. & Manners, I. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015).

    Article  CAS  Google Scholar 

  25. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  CAS  Google Scholar 

  26. Aseyev, V., Tenhu, H. & Winnik, F. M. Self Organized Nanostructures of Amphiphilic Block Copolymers II (Springer, Berlin Heidelberg, 2011).

  27. Heuser, T., Merindol, R., Loescher, S., Klaus, A. & Walther, A. Photonic devices out of equilibrium: transient memory, signal propagation, and sensing. Adv. Mater. 29, 9807–9814 (2017).

    Article  CAS  Google Scholar 

  28. Groeschel, A. H. et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503, 247–251 (2013).

    Article  CAS  Google Scholar 

  29. Lyon, L. A., Meng, Z. Y., Singh, N., Sorrell, C. D. & St John, A. Thermoresponsive microgel-based materials. Chem. Soc. Rev. 38, 865–874 (2009).

    Article  CAS  Google Scholar 

  30. Lutz, J. F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article  CAS  Google Scholar 

  31. Blanco, L. et al. Highly efficient DNA-synthesis by the phage Φ29 DNA polymerase. J. Biol. Chem. 264, 8935–8940 (1989).

    CAS  Google Scholar 

  32. Ali, M. M. et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43, 3324–3341 (2014).

    Article  CAS  Google Scholar 

  33. Nelissen, F. H. T., Goossens, E. P. M., Tessari, M. & Heus, H. A. Enzymatic preparation of multimilligram amounts of pure single-stranded DNA samples for material and analytical sciences. Anal. Biochem. 475, 68–73 (2015).

    Article  CAS  Google Scholar 

  34. Estévez-Torres, A. & Baigl, D. DNA compaction: fundamentals and applications. Soft Matter 7, 6746–6756 (2011).

    Article  CAS  Google Scholar 

  35. Bomboi, F. et al. Re-entrant DNA gels. Nat. Commun. 7, 13191 (2016).

    Article  CAS  Google Scholar 

  36. Duguid, J. G. & Bloomfield, V. A. Aggregation of melted DNA by divalent metal ion-mediated cross-linking. Biophys. J. 69, 2642–2648 (1995).

    Article  CAS  Google Scholar 

  37. Zozulya, V. N., Nesterov, A. B., Ryazanova, O. A. & Blagoi, Y. P. Conformational transitions and aggregation in poly(dA)-poly(dT) system induced by Na+ and Mg2+ ions. Int. J. Biol. Macromolec. 33, 183–191 (2003).

    Article  CAS  Google Scholar 

  38. Kohno, Y., Saita, S., Men, Y. J., Yuan, J. Y. & Ohno, H. Thermoresponsive polyelectrolytes derived from ionic liquids. Polym. Chem. 6, 2163–2178 (2015).

    Article  CAS  Google Scholar 

  39. Plamper, F. A., Schmalz, A., Ballauff, M. & Mueller, A. H. E. Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N,N-dimethylaminoethyl methacrylate). J. Am. Chem. Soc. 129, 14538–14539 (2007).

    Article  CAS  Google Scholar 

  40. Elbert, D. L. Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review. Acta Biomater. 7, 31–56 (2011).

    Article  CAS  Google Scholar 

  41. Zheng, H., Shabalin, I. G., Handing, K. B., Bujnicki, J. M. & Minor, W. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection. Nucleic Acids Res. 43, 3789–3801 (2015).

    Article  CAS  Google Scholar 

  42. Zavitsas, A. A. Aqueous solutions of calcium ions: hydration numbers and the effect of temperature. J. Phys. Chem. B 109, 20636–20640 (2005).

    Article  CAS  Google Scholar 

  43. Yatsunyk, L. A., Mendoza, O. & Mergny, J.-L. 'Nano-oddities': unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc. Chem. Res. 47, 1836–1844 (2014).

    Article  CAS  Google Scholar 

  44. Rippe, K., Fritsch, V., Westhof, E. & Jovin, T. M. Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J. 11, 3777–3786 (1992).

    Article  CAS  Google Scholar 

  45. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  CAS  Google Scholar 

  46. Rodriguez-Arco, L., Li, M. & Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 16, 857–863 (2017).

    Article  CAS  Google Scholar 

  47. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  48. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    Article  CAS  Google Scholar 

  49. Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

    Article  CAS  Google Scholar 

  50. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  Google Scholar 

  51. Shanmugam, V., Selvakumar, S. & Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 43, 6254–6287 (2014).

    Article  CAS  Google Scholar 

  52. Willner, I., Shlyahovsky, B., Zayats, M. & Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev. 37, 1153–1165 (2008).

    Article  CAS  Google Scholar 

  53. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  CAS  Google Scholar 

  54. Hyman, A. A., Weber, C. A. & Juelicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded via the ERC Starting Grant TimeProSAMat (677960). S.L. is funded through a scholarship of the FCI. We thank A. Kuehne for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.M. and A.W. conceived the project, designed the experiments and analysed the data. R.M., S.L. and A.S. carried out the experiments. A.W. supervised the project. R.M. and A.W. wrote the manuscript.

Corresponding author

Correspondence to Andreas Walther.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–8, Supplementary Table 1 and Supplementary References

Supplementary Video 1

Photobleaching of crosslinked core–shell all-DNA microgels

Supplementary Video 2

Photobleaching of core–shell all-DNA protocells with liquid DNA core

Supplementary Video 3

Photothermal ejection of ssDNA from core–shell all-DNA protocells with liquid DNA core and Au-NPs embedded inside the shells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merindol, R., Loescher, S., Samanta, A. et al. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nature Nanotech 13, 730–738 (2018). https://doi.org/10.1038/s41565-018-0168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0168-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing