Switchable geometric frustration in an artificial-spin-ice–superconductor heterosystem

Abstract

Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics1, such as data storage, memory and logic2. However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system3,4. Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure5. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting ‘particles’ using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions6, electrons and holes in two-dimensional materials7,8, and topological insulators9, as well as colloids in soft materials10,11,12,13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Reconfigurable potential landscapes and flux-quantum motion controlled by ASI.
Fig. 2: Switchable geometric frustration and crystallization.
Fig. 3: Geometrically frustrated local interactions and breakdown of long-range order.
Fig. 4: Reprogrammable flux-quantum rectifier.

References

  1. 1.

    Ramirez, A. P. Geometric frustration: magic moments. Nature 421, 483 (2003).

    Article  Google Scholar 

  2. 2.

    Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter 25, 363201 (2013).

    Article  Google Scholar 

  3. 3.

    Perrin, Y., Canals, B. & Rougemaille, N. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice. Nature 540, 410–413 (2016).

    Article  Google Scholar 

  4. 4.

    Lieb, E. H. Residual entropy of square ice. Phys. Rev. 162, 162–172 (1967).

    Article  Google Scholar 

  5. 5.

    Wang, Y.-L. et al. Rewritable artificial magnetic charge ice. Science 352, 962–966 (2016).

    Article  Google Scholar 

  6. 6.

    Ma, F., Reichhardt, C., Gan, W., Reichhardt, C. J. O. & Lew, W. S. Emergent geometric frustration of artificial magnetic skyrmion crystals. Phys. Rev. B 94, 144405 (2016).

    Article  Google Scholar 

  7. 7.

    Singha, A. et al. Two-dimensional Mott–Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011).

    Article  Google Scholar 

  8. 8.

    Taillefumier, M., Dugaev, V. K., Canals, B., Lacroix, C. & Bruno, P. Graphene in a periodically alternating magnetic field: an unusual quantization of the anomalous Hall effect. Phys. Rev. B 84, 085427 (2011).

    Article  Google Scholar 

  9. 9.

    Gilbert, I., Nisoli, C. & Schiffer, P. Frustration by design. Phys. Today 69, 54–59 (2016).

    Article  Google Scholar 

  10. 10.

    Loehr, J., Ortiz-Ambriz, A. & Tierno, P. Defect dynamics in artificial colloidal ice: real-time observation, manipulation, and logic gate. Phys. Rev. Lett. 117, 168001 (2016).

    Article  Google Scholar 

  11. 11.

    Ortiz-Ambriz, A. & Tierno, P. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices. Nat. Commun. 7, 10575 (2016).

    Article  Google Scholar 

  12. 12.

    Han, Y. et al. Geometric frustration in buckled colloidal monolayers. Nature 456, 898–903 (2008).

    Article  Google Scholar 

  13. 13.

    Libal, A., Reichhardt, C. & Olson, C. J. Realizing colloidal artificial ice on arrays of optical traps. Phys. Rev. Lett. 97, 228302 (2006).

    Article  Google Scholar 

  14. 14.

    Gammel, P. Why vortices matter. Nature 411, 434–435 (2001).

    Article  Google Scholar 

  15. 15.

    Savel’ev, S. & Nori, F. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors. Nat. Mater. 1, 179–184 (2002).

    Article  Google Scholar 

  16. 16.

    Park, K. & Huse, D. A. Superconducting phase with fractional vortices in the frustrated kagome wire network at f = 1/2. Phys. Rev. B 64, 134522 (2001).

    Article  Google Scholar 

  17. 17.

    Libal, A., Olson, C. J. & Reichhardt, C. Creating artificial ice states using vortices in nanostructured superconductors. Phys. Rev. Lett. 102, 237004 (2009).

    Article  Google Scholar 

  18. 18.

    Latimer, M. L., Berdiyorov, G. R., Xiao, Z. L., Peeters, F. M. & Kwok, W. K. Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures. Phys. Rev. Lett. 111, 067001 (2013).

    Article  Google Scholar 

  19. 19.

    Trastoy, J. et al. Freezing and thawing of artificial ice by thermal switching of geometric frustration in magnetic flux lattices. Nat. Nanotech. 9, 710–715 (2014).

    Article  Google Scholar 

  20. 20.

    Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    Article  Google Scholar 

  21. 21.

    Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  Google Scholar 

  22. 22.

    Nisoli, C. et al. Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice. Phys. Rev. Lett. 105, 047205 (2010).

    Article  Google Scholar 

  23. 23.

    Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).

    Article  Google Scholar 

  24. 24.

    Zhang, S. et al. Crystallites of magnetic charges in artificial spin ice. Nature 500, 553–557 (2013).

    Article  Google Scholar 

  25. 25.

    Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H.Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).

    Article  Google Scholar 

  26. 26.

    Kapaklis, V. et al. Thermal fluctuations in artificial spin ice. Nat. Nanotech. 9, 514–519 (2014).

    Article  Google Scholar 

  27. 27.

    Moller, G. & Moessner, R. Artificial square ice and related dipolar nanoarrays. Phys. Rev. Lett. 96, 237202 (2006).

    Article  Google Scholar 

  28. 28.

    Nisoli, C. Dumping topological charges on neighbors: ice manifolds for colloids and vortices. New J. Phys. 16, 113049 (2014).

    Article  Google Scholar 

  29. 29.

    Nisoli, C. Spin ice vs. thin ice. Preprint at https://arxiv.org/abs/1802.07900 (2018).

  30. 30.

    Milosevic, M. V. & Peeters, F. M. Vortex pinning in a superconducting film due to in-plane magnetized ferromagnets of different shapes: the London approximation. Phys. Rev. B 69, 104522 (2004).

    Article  Google Scholar 

  31. 31.

    Baert, M., Metlushko, V. V., Jonckheere, R., Moshchalkov, V. V. & Bruynseraede, Y. Composite flux-line lattices stabilized in superconducting films by a regular array of artificial defects. Phys. Rev. Lett. 74, 3269–3272 (1995).

    Article  Google Scholar 

  32. 32.

    Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).

    Article  Google Scholar 

  33. 33.

    Villegas, J. E. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188–1191 (2003).

    Article  Google Scholar 

  34. 34.

    De Souza Silva, C. C., de Vondel, J. V., Morelle, M. & Moshchalkov, V. V. Controlled multiple reversals of a ratchet effect. Nature 440, 651–654 (2006).

    Article  Google Scholar 

  35. 35.

    Lee, C. S., Janko, B., Derenyi, I. & Barabasi, A. L. Reducing vortex density in superconductors using the ‘ratchet effect’. Nature 400, 337–340 (1999).

    Article  Google Scholar 

  36. 36.

    De Souza Silva, C. C. et al. Dipole-induced vortex ratchets in superconducting films with arrays of micromagnets. Phys. Rev. Lett. 98, 117005 (2007).

    Article  Google Scholar 

  37. 37.

    Wang, Y. L. et al. Parallel magnetic field suppresses dissipation in superconducting nanostripes. Proc. Natl Acad. Sci. USA 114, E10274 (2017).

    Article  Google Scholar 

  38. 38.

    Sadovskyy, A., Wang, Y. L., Xiao, Z.-L., Kwok, W.-K. & Glatz, A. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films. Phys. Rev. B 95, 075303 (2017).

    Article  Google Scholar 

  39. 39.

    Wang, Y. L. et al. Enhancing superconducting critical current by randomness. Phys. Rev. B 93, 045111 (2016).

    Article  Google Scholar 

  40. 40.

    Wang, Y. L. et al. Enhancing the critical current of a superconducting film in a wide range of magnetic fields with a conformal array of nanoscale holes. Phys. Rev. B 87, 220501 (2013).

    Article  Google Scholar 

  41. 41.

    White, W. R., Kapitulnik, A. & Beasley, M. R. Collective vortex motion in a-MoGe superconducting thin films. Phys. Rev. Lett. 70, 670–673 (1993).

    Article  Google Scholar 

  42. 42.

    Reichhardt, C., Ray, D. & Reichhardt, C. J. O. Reversible ratchet effects for vortices in conformal pinning arrays. Phys. Rev. B 91, 184502 (2015).

    Article  Google Scholar 

  43. 43.

    Reichhardt, C. & Gronbech-Jensen, N. Critical currents and vortex states at fractional matching fields in superconductors with periodic pinning. Phys. Rev. B 63, 054510 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. Z.-L.X. and J.X. acknowledge National Science Foundation grant DMR-1407175.

Author information

Affiliations

Authors

Contributions

Y.-L.W., Z.-L.X., B.J. and W.-K.K. conceived and supervised the project. Y.-L.W., J.X., Z.-L.X. and W.-K.K. designed the experiments. X.M. and B.J. designed the simulations. Y.-L.W., J.X., R.D., L.E.O. and J.E.P. fabricated samples. Y.-L.W., J.X. and A.S. conducted the measurements. X.M. conducted the simulations. Y.-L.W., X.M. and J.X., analysed the data. Y.-L.W., X.M., J.X., Z.-L.X., B.J. and W.-K.K. co-wrote the manuscript. All authors contributed to the discussion of the data and commented on the manuscript.

Corresponding authors

Correspondence to Yong-Lei Wang or Zhi-Li Xiao or Boldizsar Janko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Video Captions

Supplementary Video 1

d.c. transport property under type-II MC configuration at B/BΦ = 1.5

Supplementary Video 2

d.c. transport property under type-II MC configuration at B/BΦ = 0.5

Supplementary Video 3

d.c. transport property under type-II MC configuration at B/BΦ = 1.0

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, X., Xu, J. et al. Switchable geometric frustration in an artificial-spin-ice–superconductor heterosystem. Nature Nanotech 13, 560–565 (2018). https://doi.org/10.1038/s41565-018-0162-7

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research