Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Borophene as a prototype for synthetic 2D materials development

Abstract

The synthesis of 2D materials with no analogous bulk layered allotropes promises a substantial breadth of physical and chemical properties through the diverse structural options afforded by substrate-dependent epitaxy. However, despite the joint theoretical and experimental efforts to guide materials discovery, successful demonstrations of synthetic 2D materials have been rare. The recent synthesis of 2D boron polymorphs (that is, borophene) provides a notable example of such success. In this Perspective, we discuss recent progress and future opportunities for borophene research. Borophene combines unique mechanical properties with anisotropic metallicity, which complements the canon of conventional 2D materials. The multi-centre characteristics of boron–boron bonding lead to the formation of configurationally varied, vacancy-mediated structural motifs, providing unprecedented diversity in a mono-elemental 2D system with potential for electronic applications, chemical functionalization, materials synthesis and complex heterostructures. With its foundations in computationally guided synthesis, borophene can serve as a prototype for ongoing efforts to discover and exploit synthetic 2D materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Summary of borophene structure and properties.
Fig. 2: Fundamentals of boron structure and chemistry.
Fig. 3: Theory of 2D boron in vacuum and on substrates.
Fig. 4: Experimental synthesis of borophene.
Fig. 5: Future prospects for borophene research.

References

  1. 1.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  Google Scholar 

  2. 2.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  Google Scholar 

  3. 3.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  Google Scholar 

  4. 4.

    Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    Article  Google Scholar 

  5. 5.

    Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 1–15 (2017).

    Article  Google Scholar 

  6. 6.

    Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    Article  Google Scholar 

  7. 7.

    Feng, B. et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012).

    Article  Google Scholar 

  8. 8.

    Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).

    Article  Google Scholar 

  9. 9.

    Zhu, F. F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    Article  Google Scholar 

  10. 10.

    Ji, J. P. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).

    Article  Google Scholar 

  11. 11.

    Nagao, T. et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7x7. Phys. Rev. Lett. 93, 105501 (2004).

    Article  Google Scholar 

  12. 12.

    Reis, F. et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

    Article  Google Scholar 

  13. 13.

    Zhu, Z. et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and axperimental study. Phys. Rev. Lett. 119, 106101 (2017).

    Article  Google Scholar 

  14. 14.

    Zhang, Y., Rubio, A. & Lay, G. L. Emergent elemental two-dimensional materials beyond graphene. J. Phys. D Appl. Phys. 50, aa4e8b (2017).

    Google Scholar 

  15. 15.

    Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

    Article  Google Scholar 

  16. 16.

    Molle, A. et al. Buckled two-dimensional Xene sheets. Nat. Mater. 16, 163–169 (2017).

    Article  Google Scholar 

  17. 17.

    Liu, Y., Penev, E. S. & Yakobson, B. I. Probing the synthesis of two‐dimensional boron by first‐principles computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).This paper provided the first predictions of Ag(111) as an ideal substrate for borophene growth.

    Article  Google Scholar 

  18. 18.

    Wu, X. et al. Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012).

    Article  Google Scholar 

  19. 19.

    Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).This paper predicted structural polymorphism in borophene based on avacancy-mediated (that is, hollow hexagon) superstructural motif.

    Article  Google Scholar 

  20. 20.

    Mannix, A. J. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).This paper demonstrated the first experimental evidence for borophene synthesis under ultrahigh vacuum conditions on a Ag(111) substrate.

    Article  Google Scholar 

  21. 21.

    Zhang, Z., Yang, Y., Penev, E. S. & Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 27, 1605059 (2017).

    Article  Google Scholar 

  22. 22.

    Zhang, Z. et al. Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16, 6622–6627 (2016).

    Article  Google Scholar 

  23. 23.

    Adamska, L., Sadasivam, S., Foley, J. J., Darancet, P. & Sharifzadeh, S. First-principles investigation of borophene as a monolayer transparent conductor. J. Phys. Chem. C 122, 4037–4045 (2018).

    Article  Google Scholar 

  24. 24.

    Zhao, Y., Zeng, S. & Ni, J. Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93, 014502 (2016).

    Article  Google Scholar 

  25. 25.

    Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016). Refs 24 and 25 predict superconductivity in borophene, a key attribute for futher fundamental and technological exploration.

    Article  Google Scholar 

  26. 26.

    Ogitsu, T., Schwegler, E. & Galli, G. β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).

    Article  Google Scholar 

  27. 27.

    Sergeeva, A. P. et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014). Refs 27 and 33 provide important fundamentals of boron chemical bonding, including cluster planarity.

    Article  Google Scholar 

  28. 28.

    Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

    Article  Google Scholar 

  29. 29.

    Douglas, B. & Ho, S.-M. Structure and Chemistry of Crystalline Solids (Springer Science & Business Media, New York, 2007).

  30. 30.

    Matkovich, V. I. (ed.) Boron and Refractory Borides (Springer-Verlag, Berlin, 1977).

  31. 31.

    Kolmogorov, A. N. & Curtarolo, S. Theoretical study of metal borides stability. Phys. Rev. B 74, 224507 (2006).

    Article  Google Scholar 

  32. 32.

    Carenco, S., Portehault, D., Boissière, C., Mézailles, N. & Sanchez, C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113, 7981–8065 (2013).

    Article  Google Scholar 

  33. 33.

    Zhai, H.-J., Kiran, B., Li, J. & Wang, L.-S. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).

    Article  Google Scholar 

  34. 34.

    Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).

    Article  Google Scholar 

  35. 35.

    Piazza, Z. A., Hu, H. S., Li, W. L., Zhao, Y. F. & Li, J. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014).

    Article  Google Scholar 

  36. 36.

    Wang, Y. Q. & Duan, X. F. Crystalline boron nanowires. Appl. Phys. Lett. 82, 272–274 (2003).

    Article  Google Scholar 

  37. 37.

    Tian, J. et al. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale 2, 1375–1389 (2010).

    Article  Google Scholar 

  38. 38.

    Ciuparu, D., Klie, R. F., Zhu, Y. & Pfefferle, L. Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004).

    Article  Google Scholar 

  39. 39.

    Liu, F. et al. Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010).

    Article  Google Scholar 

  40. 40.

    Tai, G. et al. Synthesis of atomically thin boron films on copper foils. Angew. Chem. 54, 15693–15697 (2015).

    Article  Google Scholar 

  41. 41.

    Das, S. K., Bedar, A., Kannan, A. & Jasuja, K. Aqueous dispersions of few- layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci. Rep. 5, 10522 (2015).

    Article  Google Scholar 

  42. 42.

    Suehara, S., Aizawa, T. & Sasaki, T. Graphenelike surface boron layer: Structural phases on transition-metal diborides (0001). Phys. Rev. B 81, 085423 (2010).

    Article  Google Scholar 

  43. 43.

    Lau, K. C. & Pandey, R. Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C 111, 2906–2912 (2007).

    Article  Google Scholar 

  44. 44.

    Boustani, I. Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n = 2–14). Phys. Rev. B 55, 16426 (1997).

    Article  Google Scholar 

  45. 45.

    Zhou, X. F. et al. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).

    Article  Google Scholar 

  46. 46.

    Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).Refs 46, 48 and 49 introduced the α-sheet model for borophene, demonstrating a structure with relatively high stability that has provided a foundation for most subsequent theoretical work.

    Article  Google Scholar 

  47. 47.

    Yang, X., Ding, Y. & Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402 (2008).

    Article  Google Scholar 

  48. 48.

    Penev, E. S., Artyukhov, V. I., Ding, F. & Yakobson, B. I. Unfolding the fullerene: nanotubes, graphene and poly-elemental varieties by simulations. Adv. Mater. 24, 4956–4976 (2012).

    Article  Google Scholar 

  49. 49.

    Gonzalez Szwacki, N., Sadrzadeh, A. & Yakobson, B. I. B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 245–244 (2007).

    Article  Google Scholar 

  50. 50.

    Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-dimensional materials: Polyphony in B flat. Nat. Chem. 8, 525–527 (2016).

    Article  Google Scholar 

  51. 51.

    Tang, H. & Ismail-Beigi, S. First-principles study of boron sheets and nanotubes. Phys. Rev. B 82, 115412–115420 (2010).

    Article  Google Scholar 

  52. 52.

    Sun, X. et al. Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017).

    Article  Google Scholar 

  53. 53.

    Liu, H., Gao, J. & Zhao, J. From boron cluster to two-dimensional boron sheet on Cu (111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013).

    Article  Google Scholar 

  54. 54.

    Zhang, Z., Yang, Y., Gao, G. & Yakobson, B. I. Two‐dimensional boron monolayers mediated by metal substrates. Angew. Chem. 127, 13214–13218 (2015).This paper was the first to predict the preferred v 1/6 structure later observed experimentally for the striped phase.

    Article  Google Scholar 

  55. 55.

    Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).This paper was the first experimental work to link flat structure models containing hollow hexagon superstructures with observations of borphene synthesis.

    Article  Google Scholar 

  56. 56.

    Zhong, Q. et al. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 1, 021001–021005 (2017).

    Article  Google Scholar 

  57. 57.

    Feng, B. et al. Direct evidence of metallic bands in a monolayer boron sheet. Phys. Rev. B 94, 041408–041405 (2016).

    Article  Google Scholar 

  58. 58.

    Feng, B. et al. Dirac fermions in borophene. Phys. Rev. Lett. 118, 096401–096406 (2017).

    Article  Google Scholar 

  59. 59.

    Zhang, Z., Shirodkar, S. N., Yang, Y. & Yakobson, B. I. Gate‐voltage control of borophene structure formation. Angew. Chem. 129, 15623–15628 (2017).

    Article  Google Scholar 

  60. 60.

    Wang, Y., Fan, J. & Trenary, M. Surface chemistry of boron oxidation. 1. Reactions of oxygen and water with boron films grown on tantalum(110). Chem. Mater. 5, 192–198 (1993).

    Article  Google Scholar 

  61. 61.

    Liu, X. et al. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 3, e1602356 (2017).

    Article  Google Scholar 

  62. 62.

    Huang, Y., Shirodkar, S. N. & Yakobson, B. I. Two-dimensional boron polymorphs for visible range plasmonics - a first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017).

    Article  Google Scholar 

  63. 63.

    Nagamatsu, J., Makagawa, N., Murenaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  Google Scholar 

  64. 64.

    Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P. & Boyer, L. L. Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 86, 4656–4659 (2001).

    Article  Google Scholar 

  65. 65.

    Tsafack, T. & Yakobson, B. I. Thermomechanical analysis of two-dimensional boron monolayers. Phys. Rev. B 93, 165434 (2016).

    Article  Google Scholar 

  66. 66.

    Yan, Z., Peng, Z. & Tour, J. M. Chemical vapor deposition of graphene single crystals. Acc. Chem. Res. 47, 1327–1337 (2014).

    Article  Google Scholar 

  67. 67.

    Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotech. 10, 227–231 (2015).

    Article  Google Scholar 

  68. 68.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  Google Scholar 

  69. 69.

    Ryder, C. R. et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597–602 (2016).

    Article  Google Scholar 

  70. 70.

    Johns, J. E. & Hersam, M. C. Atomic covalent functionalization of graphene. Acc. Chem. Res. 46, 77–86 (2013).

    Article  Google Scholar 

  71. 71.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  72. 72.

    Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2016).

    Article  Google Scholar 

  73. 73.

    Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2013).

    Article  Google Scholar 

  74. 74.

    Liu, M., Artyukhov, V. I. & Yakobson, B. I. Mechanochemistry of one-dimensional boron: structural and electronic transitions. J. Am. Chem. Soc. 139, 2111–2117 (2017).

    Article  Google Scholar 

  75. 75.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  Google Scholar 

  76. 76.

    Er, Sl, de Wijs, G. A. & Brocks, G. DFT study of planar boron sheets: a new template for hydrogen storage. J. Phys. Chem. C 113, 18962–18967 (2009).

    Article  Google Scholar 

  77. 77.

    Jiang, H., Lu, Z., Wu, M., Ciucci, F. & Zhao, T. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97–104 (2016).

    Article  Google Scholar 

  78. 78.

    Zhang, X. et al. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016).

    Article  Google Scholar 

  79. 79.

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotech. 13, 246–252 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility, and supported by the US Department of Energy, Office of Science, under Contract no. DE-AC02-06CH11357. A.J.M. acknowledges the National Science Foundation Graduate Fellowship Program (DGE-1324585). The work at Rice University was supported by the Department of Energy (DE-SC0012547, structure–synthesis models) and in part by the Office of Naval Research (N00014-15-1-2372, electronics and superconductivity). Z.Z. acknowledges the support of NSFC (11772153). M.C.H. also acknowledges the Office of Naval Research (N00014-17-1-2993).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Boris I. Yakobson or Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mannix, A.J., Zhang, Z., Guisinger, N.P. et al. Borophene as a prototype for synthetic 2D materials development. Nature Nanotech 13, 444–450 (2018). https://doi.org/10.1038/s41565-018-0157-4

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research