Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon nanotube bundles with tensile strength over 80 GPa


Carbon nanotubes (CNTs) are one of the strongest known materials. When assembled into fibres, however, their strength becomes impaired by defects, impurities, random orientations and discontinuous lengths. Fabricating CNT fibres with strength reaching that of a single CNT has been an enduring challenge. Here, we demonstrate the fabrication of CNT bundles (CNTBs) that are centimetres long with tensile strength over 80 GPa using ultralong defect-free CNTs. The tensile strength of CNTBs is controlled by the Daniels effect owing to the non-uniformity of the initial strains in the components. We propose a synchronous tightening and relaxing strategy to release these non-uniform initial strains. The fabricated CNTBs, consisting of a large number of components with parallel alignment, defect-free structures, continuous lengths and uniform initial strains, exhibit a tensile strength of 80 GPa (corresponding to an engineering tensile strength of 43 GPa), which is far higher than that of any other strong fibre.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fabrication and structural characterization of ultralong CNTBs.
Fig. 2: Mechanical properties of ultralong CNTs/CNTBs without any treatment.
Fig. 3: Raman spectra of as-synthesized ultralong CNTs/CNTBs.
Fig. 4: Synchronous tightening and relaxing treatment of CNTBs.
Fig. 5: The strength of ultralong CNTBs.


  1. 1.

    Zhang, R., Zhang, Y. & Wei, F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 46, 3661–3715 (2017).

    Article  Google Scholar 

  2. 2.

    Appell, D. Stairway to the heavens. Phys. World 24, 30–34 (2011).

    Article  Google Scholar 

  3. 3.

    Chae, H. G. & Kumar, S. Rigid‐rod polymeric fibers. J. Appl. Polym. Sci. 100, 791–802 (2006).

    Article  Google Scholar 

  4. 4.

    MInus, M. & Kumar, S. The processing, properties, and structure of carbon fibers. J. Miner. Met. Mater. Soc. 57, 52–58 (2005).

    Article  Google Scholar 

  5. 5.

    Peng, B. et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotech. 3, 626–631 (2008).

    Article  Google Scholar 

  6. 6.

    Zhang, R. et al. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 23, 3387–3391 (2011).

    Article  Google Scholar 

  7. 7.

    Zhao, Q. Z., Nardelli, M. B. & Bernholc, J. Ultimate strength of carbon nanotubes: a theoretical study. Phys. Rev. B 65, 144105 (2002).

    Article  Google Scholar 

  8. 8.

    Zhang, R., Zhang, Y. & Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res. 50, 179–189 (2017).

    Article  Google Scholar 

  9. 9.

    Wang, Y., Wei, F., Luo, G., Yu, H. & Gu, G. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem. Phys. Lett. 364, 568–572 (2002).

    Article  Google Scholar 

  10. 10.

    Ren, Z. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    Article  Google Scholar 

  11. 11.

    Zhao, M.-Q. et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest–host mediated layered double hydroxides. J. Am. Chem. Soc. 132, 14739–14741 (2010).

    Article  Google Scholar 

  12. 12.

    Ding, L., Yuan, D. & Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 130, 5428–5429 (2008).

    Article  Google Scholar 

  13. 13.

    Wen, Q. et al. 100 mm long, semiconducting triple-walled carbon nanotubes. Adv. Mater. 22, 1867–1871 (2010).

    Article  Google Scholar 

  14. 14.

    Koziol, K. et al. High-performance carbon nanotube fiber. Science 318, 1892–1895 (2007).

    Article  Google Scholar 

  15. 15.

    Beese, A. M. et al. Key factors limiting carbon nanotube yarn strength: exploring processing–structure–property relationships. ACS Nano 8, 11454–11466 (2014).

    Article  Google Scholar 

  16. 16.

    Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447–1450 (2004).

    Article  Google Scholar 

  17. 17.

    Zhang, X. et al. Spinning and processing continuous yarns from 4‐inch wafer scale super‐aligned carbon nanotube arrays. Adv. Mater. 18, 1505–1510 (2006).

    Article  Google Scholar 

  18. 18.

    Zhang, R. et al. Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 7, 6156–6161 (2013).

    Article  Google Scholar 

  19. 19.

    Liu, Y. et al. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology 20, 185601 (2009).

    Article  Google Scholar 

  20. 20.

    Zhang, R. et al. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 4, 1727 (2013).

    Article  Google Scholar 

  21. 21.

    Eder, D. & Windle, A. H. Morphology control of CNT–TiO2 hybrid materials and rutile nanotubes. J. Mater. Chem. 18, 2036–2043 (2008).

    Article  Google Scholar 

  22. 22.

    Georgakilas, V. et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007).

    Article  Google Scholar 

  23. 23.

    Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotech. 8, 912–916 (2013).

    Article  Google Scholar 

  24. 24.

    Zhang, D. et al. Multiple electronic Raman scatterings in a single metallic carbon nanotube. Phys. Rev. B 93, 245428 (2016).

    Article  Google Scholar 

  25. 25.

    Wu, W. et al. True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Res. 8, 2721–2732 (2015).

    Article  Google Scholar 

  26. 26.

    Zhu, Z. et al. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Sci. Adv. 2, e1601572 (2016).

    Article  Google Scholar 

  27. 27.

    Ye, X., Zhao, L., Liang, J., Li, X. & Chen, G.-Q. Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis. Sci. Rep. 7, 46052 (2017).

    Article  Google Scholar 

  28. 28.

    Dresselhaus, M., Dresselhaus, G., Jorio, A., Souza Filho, A. & Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043–2061 (2002).

    Article  Google Scholar 

  29. 29.

    Zhang, Y. et al. Raman spectra variation of partially suspended individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 1983–1987 (2007).

    Article  Google Scholar 

  30. 30.

    Chang, C.-C. et al. A new lower limit for the ultimate breaking strain of carbon nanotubes. ACS Nano 4, 5095–5100 (2010).

    Article  Google Scholar 

  31. 31.

    Chang, C.-C. et al. Strain-induced D band observed in carbon nanotubes. Nano Res. 5, 854–862 (2012).

    Article  Google Scholar 

  32. 32.

    Nakagawa, T. & Osaki, S. The discrete Weibull distribution. IEEE Trans. Rel. 24, 300–301 (1975).

    Article  Google Scholar 

  33. 33.

    Cohen, A. C. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 7, 579–588 (1965).

    Article  Google Scholar 

  34. 34.

    Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951).

    Google Scholar 

  35. 35.

    Chi, Z., Chou, T. W. & Shen, G. Determination of single fibre strength distribution from fibre bundle testings. J. Mater. Sci. 19, 3319–3324 (1984).

    Article  Google Scholar 

  36. 36.

    Zhou, Y., Wang, Y., Xia, Y. & Jeelani, S. Tensile behavior of carbon fiber bundles at different strain rates. Mater. Lett. 64, 246–248 (2010).

    Article  Google Scholar 

  37. 37.

    Daniels, H. E. The statistical theory of the strength of bundles of threads. Proc. R. Soc. Lond. A 183, 405–435 (1945).

    Article  Google Scholar 

  38. 38.

    Lan, C., Li, H. & Ju, Y. Bearing capacity assessment for parallel wire cables. China Civ. Eng. J. 46, 31–38 (2013).

    Google Scholar 

  39. 39.

    Daniels, H. The maximum size of a closed epidemic. Adv. Appl. Prob. 6, 607–621 (1974).

    Article  Google Scholar 

  40. 40.

    Gollwitzer, S. & Rackwitz, R. On the reliability of Daniels systems. Struct. Saf. 7, 229–243 (1990).

    Article  Google Scholar 

  41. 41.

    MInus, M. & Kumar, S. The processing, properties, and structure of carbon fibers. JOM 57, 52–58 (2005).

    Article  Google Scholar 

  42. 42.

    Chae, H. G. & Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 100, 791–802 (2006).

    Article  Google Scholar 

  43. 43.

    Zhang, X. et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19, 4198–4201 (2007).

    Article  Google Scholar 

  44. 44.

    Dalton, A. B. et al. Super-tough carbon-nanotube fibres. Nature 423, 703–703 (2003).

    Article  Google Scholar 

  45. 45.

    Yu, M.-F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  Google Scholar 

  46. 46.

    Yu, M. F., Files, B. S., Arepalli, S. & Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).

    Article  Google Scholar 

  47. 47.

    Filleter, T., Bernal, R., Li, S. & Espinosa, H. Ultrahigh strength and stiffness in cross‐linked hierarchical carbon nanotube bundles. Adv. Mater. 23, 2855–2860 (2011).

    Article  Google Scholar 

  48. 48.

    Wang, W. et al. Measurement of the cleavage energy of graphite. Nat. Commun. 6, 7853 (2015).

    Article  Google Scholar 

  49. 49.

    Li, Q., Kim, K.-S. & Rydberg, A. Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system. Rev. Sci. Instrum. 77, 065105 (2006).

    Article  Google Scholar 

  50. 50.

    Zhang, R. et al. Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles. Nanoscale 5, 6584–6588 (2013).

    Article  Google Scholar 

Download references


This study was supported by the National Natural Science Foundation of China (grant no. 21636005), the Foundation for the National Basic Research Program of China (grant no. 2016YFA0200102), the NSFC (grant nos. 11227202, 1147215) and the National Basic Research Program of China (grant no. 2013CB934203). We thank R. H. Baughman for his advice on the manuscript. We also thank P. Shi, H. Wang and H. Xie for discussions.

Author information




F.W., Y.B. and R.Z. conceived the project. Y.B. designed and performed the experiments, analysed the data and wrote the manuscript. R.Z. participated in the data analysis and figure design, and co-wrote the manuscript. X.Y. participated in the mechanical measurement. X.L. supervised the mechanical measurement and participated in the data analysis and manuscript preparation. Z.Z., H.X. and B.S. participated in the synthesis and characterization of ultralong CNTs/CNTBs. D.C. participated in the establishment of the mathematical model. B.L. participated in the figure processing. C.Z. and Z.J. provided theoretical assistance with hydromechanics. S.Z. participated in the manuscript preparation.

Corresponding authors

Correspondence to Rufan Zhang or Xide Li or Fei Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–7, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhang, R., Ye, X. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nature Nanotech 13, 589–595 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research