Exfoliation of a non-van der Waals material from iron ore hematite


With the advent of graphene, the most studied of all two-dimensional materials, many inorganic analogues have been synthesized and are being exploited for novel applications. Several approaches have been used to obtain large-grain, high-quality materials. Naturally occurring ores, for example, are the best precursors for obtaining highly ordered and large-grain atomic layers by exfoliation. Here, we demonstrate a new two-dimensional material ‘hematene’ obtained from natural iron ore hematite (α-Fe2O3), which is isolated by means of liquid exfoliation. The two-dimensional morphology of hematene is confirmed by transmission electron microscopy. Magnetic measurements together with density functional theory calculations confirm the ferromagnetic order in hematene while its parent form exhibits antiferromagnetic order. When loaded on titania nanotube arrays, hematene exhibits enhanced visible light photocatalytic activity. Our study indicates that photogenerated electrons can be transferred from hematene to titania despite a band alignment unfavourable for charge transfer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Liquid-phase exfoliation of hematite to hematene.
Fig. 2: Two-dimensional morphology of hematene.
Fig. 3: Characterization of hematene
Fig. 4: Magnetism of hematene.
Fig. 5: Photocatalysis.


  1. 1.

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  Google Scholar 

  2. 2.

    Ajayan, P. M., Kim, P. & Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016).

    Article  Google Scholar 

  3. 3.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  Google Scholar 

  4. 4.

    Service, R. F. Beyond graphene. Science 348, 490–492 (2015).

    Article  Google Scholar 

  5. 5.

    Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J. & Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011).

    Article  Google Scholar 

  6. 6.

    Xu, M. S., Liang, T., Shi, M. M. & Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    Article  Google Scholar 

  7. 7.

    Kan, E. et al. Two-dimensional hexagonal transition-metal oxide for spintronics. J. Phys. Chem. Lett. 4, 1120–1125 (2013).

    Article  Google Scholar 

  8. 8.

    Marelli, M. et al. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6, 11997–12004 (2014).

    Article  Google Scholar 

  9. 9.

    Mishra, M. & Chun, D.-M. α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015).

    Article  Google Scholar 

  10. 10.

    Chen, J., Xu, L., Li, W. & Gou, X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582–586 (2005).

    Article  Google Scholar 

  11. 11.

    Zeng, H., Li, J., Liu, J. P., Wang, Z. L. & Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002).

    Article  Google Scholar 

  12. 12.

    Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  Google Scholar 

  13. 13.

    Teja, A. S. & Koh, P.-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009).

    Article  Google Scholar 

  14. 14.

    Kennedy, J. H. & Frese, K. W. Photooxidation of water at α‐Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

    Article  Google Scholar 

  15. 15.

    Kennedy, J. H. & Frese, K. W. Flatband potentials and donor densities of polycrystalline α‐Fe2O3 determined from Mott–Schottky plots. J. Electrochem. Soc. 125, 723–726 (1978).

    Article  Google Scholar 

  16. 16.

    Scanlon, D. O. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013).

    Article  Google Scholar 

  17. 17.

    deFaria, D. L. A., Silva, S. V. & de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873–878 (1997).

    Article  Google Scholar 

  18. 18.

    McCarty, K. F. Inelastic light scattering in α-Fe2O3: phonon vs magnon scattering. Solid State Commun. 68, 799–802 (1988).

    Article  Google Scholar 

  19. 19.

    Bersani, D., Lottici, P. P. & Montenero, A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30, 355–360 (1999).

    Article  Google Scholar 

  20. 20.

    Campbell, I. H. & Fauchet, P. M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986).

    Article  Google Scholar 

  21. 21.

    Jang, J.-W. et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015).

    Article  Google Scholar 

  22. 22.

    Shim, S. H. & Duffy, T. S. Raman spectroscopy of Fe2O3 to 62 GPa. Am. Mineral. 87, 318–326 (2002).

    Article  Google Scholar 

  23. 23.

    Chastain, J., King, R. C. & Moulder, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, Eden Prairie, MN, 1995).

    Google Scholar 

  24. 24.

    Lu, X. et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26, 3148–3155 (2014).

    Article  Google Scholar 

  25. 25.

    He, Y. P. et al. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 71, 125411 (2005).

    Article  Google Scholar 

  26. 26.

    Thomas, P., Sreekanth, P. & Abraham, K. E. Nanosecond and ultrafast optical power limiting in luminescent Fe2O3 hexagonal nano morphotype. J. Appl. Phys. 117, 053103 (2015).

    Article  Google Scholar 

  27. 27.

    Wheeler, D. A., Wang, G., Ling, Y., Li, Y. & Zhang, J. Z. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5, 6682–6702 (2012).

    Article  Google Scholar 

  28. 28.

    Zou, B. et al. Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates. J. Phys. Chem. Solids 58, 1315–1320 (1997).

    Article  Google Scholar 

  29. 29.

    Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (John Wiley & Sons, Weinheim, 2003).

  30. 30.

    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  31. 31.

    Hill, A. et al. Neutron diffraction study of mesoporous and bulk hematite, α-Fe2O3. Chem. Mater. 20, 4891–4899 (2008).

    Article  Google Scholar 

  32. 32.

    Robinson, P., Harrison, R. J. & McEnroe, S. A. Lamellar magnetism in the haematite-ilmenite series as an explanation for strong remanent magnetization. Nature 418, 517–520 (2002).

    Article  Google Scholar 

  33. 33.

    Grønvold, F. & Samuelsen, E. J. Heat capacity and thermodynamic properties of α-Fe2O3 in the region 300–1050 K. antiferromagnetic transition. J. Phys. Chem. Solids 36, 249–256 (1975).

    Article  Google Scholar 

  34. 34.

    Morin, F. J. Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys. Rev. 78, 819–820 (1950).

    Article  Google Scholar 

  35. 35.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  Google Scholar 

  36. 36.

    Zysler, R. D. et al. Size effects in the spin–flop transition of hematite nanoparticles. J. Magn. Magn. Mater. 272–276, 1575–1576 (2004).

    Article  Google Scholar 

  37. 37.

    Schroeer, D. & Nininger, R. C. Morin transition in α-Fe2O3 microcrystals. Phys. Rev. Lett. 19, 632–634 (1967).

    Article  Google Scholar 

  38. 38.

    Sorescu, M., Brand, R. A., Mihaila-Tarabasanu, D. & Diamandescu, L. The crucial role of particle morphology in the magnetic properties of haematite. J. Appl. Phys. 85, 5546–5548 (1999).

    Article  Google Scholar 

  39. 39.

    Jiao, F. et al. Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 128, 5468–5474 (2006).

    Article  Google Scholar 

  40. 40.

    Liu, L., Kou, H.-Z., Mo, W., Liu, H. & Wang, Y. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J. Phys. Chem. B 110, 15218–15223 (2006).

    Article  Google Scholar 

  41. 41.

    Rollmann, G., Rohrbach, A., Entel, P. & Hafner, J. First-principles calculation of the structure and magnetic phases of hematite. Phys. Rev. B 69, 165107 (2004).

    Article  Google Scholar 

  42. 42.

    Kontos, A. I. et al. Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater. 21, 662–672 (2009).

    Article  Google Scholar 

  43. 43.

    Pelaez, M. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012).

    Article  Google Scholar 

  44. 44.

    Rao, B. M., Torabi, A. & Varghese, O. K. Anodically grown functional oxide nanotubes and applications. MRS Commun. 6, 375–396 (2016).

    Article  Google Scholar 

  45. 45.

    Paulose, M. et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. 110, 16179–16184 (2006).

    Article  Google Scholar 

  46. 46.

    Ohsaka, T., Izumi, F. & Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978).

    Article  Google Scholar 

  47. 47.

    LaTempa, T. J., Feng, X., Paulose, M. & Grimes, C. A. Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties. J. Phys. Chem. C. 113, 16293–16298 (2009).

    Article  Google Scholar 

  48. 48.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  49. 49.

    van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article  Google Scholar 

  50. 50.

    Aryanpour, M., van Duin, A. C. T. & Kubicki, J. D. Development of a reactive force field for iron−oxyhydroxide systems. J. Phys. Chem. A 114, 6298–6307 (2010).

    Article  Google Scholar 

  51. 51.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  Google Scholar 

  52. 52.

    Clark, S. J. et al. First principles methods using CASTEP. Z. Krist. Cryst. Mater. 220, 567–570 (2005).

    Google Scholar 

  53. 53.

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  Google Scholar 

  54. 54.

    Pozun, Z. D. & Henkelman, G. Hybrid density functional theory band structure engineering in hematite. J. Chem. Phys. 134, 224706 (2011).

    Article  Google Scholar 

Download references


A.P.B. acknowledges University Grants Commission, Government of India for Basic Scientific Research (BSR) Fellowship (Grant No. No.F.25-1/2013-14 (BSR)/5-22/2007(BSR) dated 30/05/2014). A.P.B., S.R., C.S.T, A.A., V.K. and P.M.A. acknowledge the US Army Research Office MURI grant W911NF-11-1-0362 for financial assistance. A.P.B., P.M.A. and R.V. acknowledge support from the Airforce Office of Scientific Research (AFOSR) through Grant No. FA9550-14-1-0268. C.F.W. thanks the São Paulo Research Foundation (FAPESP) Grant No. 2016/12340-9 for financial support. Computational and financial support from the Center for Computational Engineering and Sciences at Unicamp through the FAPESP/CEPID Grant No. 2013/08293-7 is acknowledged. L.D and C.-W.C. thank the US Air Force Office of Scientific Research Grant FA9550-15-1-0236, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston for financial support. O.K.V. thanks Shell International Exploration and Production Inc. Game Changer and New Energies Research and Technology group for financial support. A.M.R. acknowledges India based neutrino observatory (INO) for the travel grant and University Grants Commission (UGC), India for awarding UGC-BSR Faculty Fellowship.

Author information




A.P.B., S.R., C.S.T., A.A., V.K., A.R.H., A.M.R., R.V. and P.M.A planned and conducted experiments. C.F.W. and D.S.G. performed the theoretical simulations. S.K.S. and P.A.v.A performed the microscopy experiments. L.D. and C.-W.C performed the magnetic measurements. B.M.R., M.P., R.N. and O.K.V. conducted the photocatalytic experiments and analysis. G.C. collected the natural sample and performed the characterizations on the parent crystal. C.d.l.R. and A.A.M. performed the optical measurements. All the authors contributed to the analysis of data and writing the manuscript.

Corresponding authors

Correspondence to Chandra Sekhar Tiwary or Anantharaman Malie Madom Ramaswamy Iyer or Pulickel M. Ajayan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1–3, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Puthirath Balan, A., Radhakrishnan, S., Woellner, C.F. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nature Nanotech 13, 602–609 (2018). https://doi.org/10.1038/s41565-018-0134-y

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research