A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues


Among a wide range of possible applications of nanotechnology in agriculture, there has been a particular interest in developing novel nanoagrochemicals. While some concerns have been expressed regarding altered risk profile of the new products, many foresee a great potential to support the necessary increase in global food production in a sustainable way. A critical evaluation of nanoagrochemicals against conventional analogues is essential to assess the associated benefits and risks. In this assessment, recent literature was critically analysed to determine the extent to which nanoagrochemicals differ from conventional products. Our analysis was based on 78 published papers and shows that median gain in efficacy relative to conventional products is about 20–30%. Environmental fate of agrochemicals can be altered by nanoformulations, but changes may not necessarily translate in a reduction of the environmental impact. Many studies lacked nano-specific quality assurance and adequate controls. Currently, there is no comprehensive study in the literature that evaluates efficacy and environmental impact of nanoagrochemicals under field conditions. This is a crucial knowledge gap and more work will thus be necessary for a sound evaluation of the benefits and new risks that nanoagrochemicals represent relative to existing products.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Key drivers for applying nanotechnology to improve the efficacy of agrochemicals.
Fig. 2: Nanopesticide toxicity to its target.
Fig. 3: Comparisons of important environmental fate processes of nanopesticides with those of conventional analogues and AIs.
Fig. 4: Efficacy of nanofertilizers relative to their conventional analogues.
Fig. 5: Sizes of physical entities in nanopesticides and nanofertilizers (inorganic particles, polymers, micelles) determined by light scattering (dynamic light scattering and nanoparticle tracking analysis) and microscopy (transmission and scanning electron microscopy, atomic force microscopy).


  1. 1.

    World Population Prospects: Key Findings and Advance Tables (United Nations, Department of Economic and Social Affairs, 2015); https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf

  2. 2.

    Alexandratos, N. & Bruinsma, J. World Agriculture: Towards 2015/2030: The 2012 Revision (Food and Agricultural Organization of the United Nations, 2012); http://www.fao.org/docrep/016/ap106e/ap106e.pdf

  3. 3.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  Google Scholar 

  4. 4.

    Yin, J., Wang, Y. & Gilbertson, L. M. Opportunities to advance sustainable design of nano-enabled agriculture identified through a literature review. Environ. Sci. Nano 5, 11–26 (2018).

    CAS  Google Scholar 

  5. 5.

    Rodrigues, S. M. et al. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano 4, 767–781 (2017).

    CAS  Google Scholar 

  6. 6.

    Kah, M., Beulke, S., Tiede, K. & Hofmann, T. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 43, 1823–1867 (2013).

    CAS  Google Scholar 

  7. 7.

    Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60, 9781–9792 (2012).

    CAS  Google Scholar 

  8. 8.

    Kah, M. & Hofmann, T. Nanopesticide research: current trends and future priorities. Environ. Int. 63, 224–235 (2014).

    CAS  Google Scholar 

  9. 9.

    Walker, G. W. et al. Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.7b02373 (2017).

    Google Scholar 

  10. 10.

    Li, Z.-Z. et al. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag. Sci. 63, 241–246 (2007).

    CAS  Google Scholar 

  11. 11.

    Wibowo, D., Zhao, C.-X., Peters, B. C. & Middelberg, A. P. J. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem. 62, 12504–12511 (2014).

    CAS  Google Scholar 

  12. 12.

    Song, M.-R. et al. Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J. Pestic. Sci. 37, 258–260 (2012).

    CAS  Google Scholar 

  13. 13.

    Ao, M. et al. Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology 24, 35601–35601 (2013).

    Google Scholar 

  14. 14.

    Cao, L. et al. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.7b01957 (2017).

    Google Scholar 

  15. 15.

    Sarlak, N., Taherifar, A. & Salehi, F. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J. Agric. Food Chem. 62, 4833–4838 (2014).

    CAS  Google Scholar 

  16. 16.

    Sharma, S., Singh, S., Ganguli, A. K. & Shanmugam, V. Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon 115, 781–790 (2017).

    CAS  Google Scholar 

  17. 17.

    Aktar, M. W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2, 1–12 (2009).

    Google Scholar 

  18. 18.

    Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 7, 229–252 (2005).

    Google Scholar 

  19. 19.

    United Nations, Human Right Council Report of the Special Rapporteur on the Right to Food (A/HRC/34/48) (ReliefWeb, 2017); https://reliefweb.int/report/world/report-special-rapporteur-right-food-ahrc3448

  20. 20.

    Guidelines on Efficacy Evaluation for the Registration of Plant Protection Products (Food and Agricultural Organization of the United Nations, 2006); http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/Efficacy.pdf

  21. 21.

    Efficacy Experimental Design and Analysis (Australian Pesticides and Veterinary Medicines Authority, 2013); https://apvma.gov.au/node/347

  22. 22.

    de Oliveira, J. L. et al. Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J. Agric. Food Chem. 63, 422–432 (2015).

    Google Scholar 

  23. 23.

    Grillo, R. et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J. Hazard. Mater. 278, 163–171 (2014).

    CAS  Google Scholar 

  24. 24.

    Anjali, C. H. et al. Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol. Environ. Saf. 73, 1932–1936 (2010).

    CAS  Google Scholar 

  25. 25.

    Saini, P., Gopal, M., Kumar, R. & Srivastava, C. Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). J. Environ. Sci. Health Part B 49, 344–351 (2014).

    CAS  Google Scholar 

  26. 26.

    Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C. & Dilbaghi, N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 101, 1061–1067 (2014).

    CAS  Google Scholar 

  27. 27.

    Memarizadeh, N., Ghadamyari, M., Adeli, M. & Talebi, K. Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol. Environ. Saf. 107, 77–83 (2014).

    CAS  Google Scholar 

  28. 28.

    Balaji, A. P. B. et al. The environmentally benign form of pesticide in hydrodispersive nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bull. Environ. Contam. Toxicol. 95, 734–739 (2015).

    CAS  Google Scholar 

  29. 29.

    Pankaj, Shakil, N. A., Kumar, J., Singh, M. K. & Singh, K. Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J. Environ. Sci. Health Part B 47, 520–528 (2012).

    CAS  Google Scholar 

  30. 30.

    Sasson, Y., Levy-Ruso, G., Toledano, O. & Ishaaya, I. in Insecticides Design Using Advanced Technologies 1–39 (Springer, Berlin, Heidelberg, 2007).

  31. 31.

    Sandhya, Kumar, S., Kumar, D. & Dilbaghi, N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. 24, 926–937 (2017).

    CAS  Google Scholar 

  32. 32.

    Loha, K. M. et al. Release kinetics of β-cyfluthrin from its encapsulated formulations in water. J. Environ. Sci. Health Part B 46, 201–206 (2011).

    CAS  Google Scholar 

  33. 33.

    Graham, J. H. et al. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis. 100, 2442–2447 (2016).

    CAS  Google Scholar 

  34. 34.

    Carpenter, S. A star performer–Priostar® dendrimers. Grainews (6 September 2016); http://news.agropages.com/News/NewsDetail---19235.htm

  35. 35.

    Adak, T., Kumar, J., Shakil, N. A. & Walia, S. Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J. Environ. Sci. Health Part B 47, 217–225 (2012).

    CAS  Google Scholar 

  36. 36.

    Kaushik, P. et al. Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J. Environ. Sci. Health B 48, 677–685 (2013).

    CAS  Google Scholar 

  37. 37.

    Kah, M. et al. Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ. Sci. Pollut. Res. 21, 11699–11707 (2014).

    CAS  Google Scholar 

  38. 38.

    Kah, M., Weniger, A.-K. & Hofmann, T. Impacts of (nano)formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environ. Sci. Technol. 50, 10960–10967 (2016).

    CAS  Google Scholar 

  39. 39.

    Shang, Q., Shi, Y., Zhang, Y., Zheng, T. & Shi, H. Pesticide‐conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polym. Adv. Technol. 24, 137–143 (2013).

    CAS  Google Scholar 

  40. 40.

    Liang, J. et al. Bioinspired development of P(St–MAA)–avermectin nanoparticles with high affinity for foliage to enhance folia retention. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.7b01998 (2017).

    Google Scholar 

  41. 41.

    Nguyen, H. M., Hwang, I.-C., Park, J.-W. & Park, H.-J. Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag. Sci. 68, 1062–1068 (2012).

    CAS  Google Scholar 

  42. 42.

    Song, S. et al. Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf. Physicochem. Eng. Asp. 350, 57–62 (2009).

    CAS  Google Scholar 

  43. 43.

    Guan, H., Chi, D., Yu, J. & Li, H. Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot. 29, 942–946 (2010).

    CAS  Google Scholar 

  44. 44.

    Kah, M., Beulke, S. & Brown, C. D. Factors influencing degradation of pesticides in soil. J. Agric. Food Chem. 55, 4487–4492 (2007).

    CAS  Google Scholar 

  45. 45.

    World Agriculture: Towards 2015/2030 (Food and Agricultural Organization of the United Nations, 2002); http://www.fao.org/docrep/004/y3557e/y3557e11.htm

  46. 46.

    Liu, R. & Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139 (2015).

    CAS  Google Scholar 

  47. 47.

    Feizi, H., Kamali, M., Jafari, L. & Rezvani Moghaddam, P. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91, 506–511 (2013).

    CAS  Google Scholar 

  48. 48.

    Mukherjee, A. et al. Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016).

    Google Scholar 

  49. 49.

    Liu, R. & Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4, 5686 (2014).

    CAS  Google Scholar 

  50. 50.

    Benício, L. P. F. et al. Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustain. Chem. Eng. 5, 399–409 (2017).

    Google Scholar 

  51. 51.

    Abdel-Aziz, H. M. M., Hasaneen, M. N. A. & Omer, A. M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span. J. Agric. Res. 14, (2016).

  52. 52.

    Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C. & Rao, A. S. Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J. Plant Nutr. 38, 1505–1515 (2015).

    CAS  Google Scholar 

  53. 53.

    Joseph, S. et al. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4, 323–343 (2013).

    CAS  Google Scholar 

  54. 54.

    Nutrient Management Handbook (International Fertilizer Association, 2016); https://www.fertilizer.org/images/Library_Downloads/2016_Nutrient_Management_Handbook.pdf

  55. 55.

    Fertilizer Use Efficiency (United Nations, Department of Economic and Social Affairs, 2007); http://www.un.org/esa/sustdev/natlinfo/indicators/methodology_sheets/land/fertilizer_use_efficiency.pdf

  56. 56.

    Zwingmann, N., Mackinnon, I. D. R. & Gilkes, R. J. Use of a zeolite synthesised from alkali treated kaolin as a K fertiliser: glasshouse experiments on leaching and uptake of K by wheat plants in sandy soil. Appl. Clay Sci. 53, 684–690 (2011).

    CAS  Google Scholar 

  57. 57.

    Rui, M. et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815 (2016).

    Google Scholar 

  58. 58.

    Prasad, T. N. V. K. V. et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927 (2012).

    CAS  Google Scholar 

  59. 59.

    Liu, R., Zhang, H. & Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?. Water. Air. Soil Pollut. 227, 42 (2016).

    Google Scholar 

  60. 60.

    Burman, U., Saini, M. & Praveen-Kumar Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 95, 605–612 (2013).

    CAS  Google Scholar 

  61. 61.

    Pradhan, S. et al. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 62, 8777–8785 (2014).

    CAS  Google Scholar 

  62. 62.

    Cui, B. et al. Evaluation of stability and biological activity of solid nanodispersion of lambda-cyhalothrin. PLoS ONE 10, e0135953 (2015).

    Google Scholar 

  63. 63.

    Elek, N. et al. Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf. Physicochem. Eng. Asp. 372, 66–72 (2010).

    CAS  Google Scholar 

  64. 64.

    Luo, D. Q. et al. Anti-fungal efficacy of polybutylcyanoacrylate nanoparticles of allicin and comparison with pure allicin. J. Biomater. Sci. Polym. Ed. 20, 21–31 (2009).

    CAS  Google Scholar 

  65. 65.

    Grillo, R. et al. Poly(ɛ-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J. Hazard. Mater. 231–232, 1–9 (2012).

    Google Scholar 

  66. 66.

    Milani, N. et al. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J. Agric. Food Chem. 60, 3991–3998 (2012).

    CAS  Google Scholar 

  67. 67.

    Boverhof, D. R. et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 73, 137–150 (2015).

    CAS  Google Scholar 

  68. 68.

    ISO/TS 80004-2:2015−Nanotechnologies−Vocabulary−Part 2:Nano-objects (International Standard Organisation, 2015); https://www.iso.org/standard/54440.html

  69. 69.

    Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011); http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011H0696.

  70. 70.

    Maruyama, C. R. et al. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 6, 19768 (2016).

    CAS  Google Scholar 

  71. 71.

    Oliveira, H. C. et al. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS ONE 10, e0132971 (2015).

    Google Scholar 

  72. 72.

    Meredith, A. N., Harper, B. & Harper, S. L. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules. Environ. Int. 86, 68–74 (2016).

    CAS  Google Scholar 

  73. 73.

    Son, J., Hooven, L. A., Harper, B. & Harper, S. L. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda–cyhalothrin to Daphnia magna. Sci. Total Environ. 538, 683–691 (2015).

    CAS  Google Scholar 

  74. 74.

    Chaw Jiang, L. et al. Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic. Biochem. Physiol. 102, 19–29 (2012).

    Google Scholar 

  75. 75.

    Bortolin, A., Aouada, F. A., Mattoso, L. H. C. & Ribeiro, C. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J. Agric. Food Chem. 61, 7431–7439 (2013).

    CAS  Google Scholar 

  76. 76.

    Zhou, L. et al. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks. ACS Sustain. Chem. Eng. 3, 645–653 (2015).

    CAS  Google Scholar 

  77. 77.

    Babick, F., Mielke, J., Wohlleben, W., Weigel, S. & Hodoroaba, V.-D. How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J. Nanoparticle Res. 18, 158 (2016).

    Google Scholar 

  78. 78.

    Busch, L. Nanotechnologies, food, and agriculture: next big thing or flash in the pan? Agric. Hum. Values 25, 215–218 (2008).

    Google Scholar 

  79. 79.

    Cozzens, S., Cortes, R., Soumonni, O. & Woodson, T. Nanotechnology and the millennium development goals: water, energy, and agri-food. J. Nanoparticle Res. 15, 2001 (2013).

    Google Scholar 

  80. 80.

    USDA Announces $4.6 Million for Nanotechnology Research (United States Department of Agriculture, National Institute of Food and Agriculture, 2017); https://nifa.usda.gov/announcement/usda-announces-46-million-nanotechnology-research

  81. 81.

    Parisi, C., Vigani, M. & Rodríguez-Cerezo, E. Agricultural nanotechnologies: what are the current possibilities? Nano Today 10, 124–127 (2015).

    CAS  Google Scholar 

  82. 82.

    Parisi, C, Vignani, M & Rodriguez Cerezo, E. Proceedings of a Workshop on “Nanotechnology for the Agricultural Sector: From Research to the Field” (Publications Office of the European Union, 2014); https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/proceedings-workshop-nanotechnology-agricultural-sector-research-field

  83. 83.

    Kookana, R. S. et al. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62, 4227–4240 (2014).

    CAS  Google Scholar 

  84. 84.

    Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3, 64–64 (2015).

    Google Scholar 

  85. 85.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    CAS  Google Scholar 

  86. 86.

    González, J. O. W., Jesser, E. N., Yeguerman, C. A., Ferrero, A. A. & Band, B. F. Polymer nanoparticles containing essential oils: new options for mosquito control. Environ. Sci. Pollut. Res. 24, 17006–17015 (2017).

    Google Scholar 

  87. 87.

    Boehm, A. L., Martinon, I., Zerrouk, R., Rump, E. & Fessi, H. Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J. Microencapsul. 20, 433–441 (2003).

    CAS  Google Scholar 

  88. 88.

    Loha, K. M., Shakil, N. A., Kumar, J., Singh, M. & Srivastava, C. Bio-efficacy evaluation of nanoformulations of beta-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J. Environ. Sci. Health Part B 47, 687–691 (2012).

    CAS  Google Scholar 

  89. 89.

    Giannousi, K., Avramidis, I. & Dendrinou-Samara, C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 3, 21743–21752 (2013).

    CAS  Google Scholar 

  90. 90.

    Bhan, S., Mohan, L. & Srivastava, C. N. Relative larvicidal potentiality of nano-encapsulated Temephos and Imidacloprid against Culex quinquefasciatus. J. Asia-Pac. Entomol. 17, 787–791 (2014).

    CAS  Google Scholar 

  91. 91.

    Pereira, A. E. S., Grillo, R., Mello, N. F. S., Rosa, A. H. & Fraceto, L. F. Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J. Hazard. Mater. 268, 207–215 (2014).

    CAS  Google Scholar 

  92. 92.

    Chariou, P. L. & Steinmetz, N. F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11, 4719–4730 (2017).

    CAS  Google Scholar 

  93. 93.

    Sarkar, D. J., Kumar, J., Shakil, N. A. & Walia, S. Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J. Environ. Sci. Health Part A 47, 1701–1712 (2012).

    CAS  Google Scholar 

  94. 94.

    Shakil, N. A. et al. Development of poly(ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J. Macromol. Sci. Part A 47, 241–247 (2010).

    CAS  Google Scholar 

  95. 95.

    Zeng, H., Li, X., Zhang, G. & Dong, J. Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. J. Dispers. Sci. Technol. 29, 358–361 (2008).

    CAS  Google Scholar 

  96. 96.

    Silva, M. & dos, S. et al. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J. Hazard. Mater. 190, 366–374 (2011).

    CAS  Google Scholar 

  97. 97.

    Petosa, A. R., Rajput, F., Selvam, O., Öhl, C. & Tufenkji, N. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Res. 111, 10–17 (2017).

    CAS  Google Scholar 

  98. 98.

    Delfani, M., Firouzabadi, M. B., Farrokhi, N. & Makarian, H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 45, 530–540 (2014).

    CAS  Google Scholar 

  99. 99.

    Mikhak, A., Sohrabi, A., Kassaee, M. Z. & Feizian, M. Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Ind. Crops Prod. 95, 444–452 (2017).

    CAS  Google Scholar 

  100. 100.

    Elmer, W. & White, J. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 3, 1072–1079 (2016).

    CAS  Google Scholar 

  101. 101.

    Roosta, H. R., Jalali, M. & Shahrbabaki, S. M. A. V. Effect of nano Fe-chelate, Fe-Eddha and FeSO4 on vegetative growth, physiological parameters and some nutrient elements concentrations of four varieties of lettuce (lactuca Sativa L.) in NFT system. J. Plant Nutr. 38, 2176–2184 (2015).

    CAS  Google Scholar 

  102. 102.

    Roshanravan, B., Soltani, S. M., Mahdavi, F., Rashid, S. A. & Yusop, M. K. Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity. Chem. Speciat. Bioavailab. 26, 249–256 (2014).

    Google Scholar 

Download references


M.K. was supported by the Austrian Science Fund (FWF V408-N28) and A.G. was supported by the European Commission (NanoFASE, GA 646002). M.K. and R.S.K. acknowledge the support from CSIRO and the International Union of Pure and Applied Chemistry.

Author contributions

T.D.B. and M.K. initiated the project. R.S.K. collected and analysed the data on pesticide efficacy, M.K. on pesticide fate, T.D.B. on fertilizer fate and efficacy, and A.G. on pesticide and fertilizer size. All authors discussed the results and contributed to the manuscript. M.K. assembled and refined the manuscript.

Competing interests

The authors declare no competing interests.

Author information



Corresponding authors

Correspondence to Melanie Kah or Thomas Daniel Bucheli.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Tables 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kah, M., Kookana, R.S., Gogos, A. et al. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotech 13, 677–684 (2018). https://doi.org/10.1038/s41565-018-0131-1

Download citation

Further reading