Letter | Published:

Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots

Nature Nanotechnologyvolume 13pages691695 (2018) | Download Citation

Abstract

In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude1,2. Control of such near-field light–matter interaction is essential for applications in biosensing3, light harvesting4 and quantum communication5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates7,8,9,10,11. However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 3, 654–657 (2009).

  2. 2.

    Hoang, T. B. et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6, 7788 (2015).

  3. 3.

    Fabrizio, E. D. et al. Roadmap on biosensing and photonics with advanced nano-optical methods. J. Opt. 18, 063003 (2016).

  4. 4.

    Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

  5. 5.

    Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

  6. 6.

    Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

  7. 7.

    Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

  8. 8.

    Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

  9. 9.

    Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

  10. 10.

    Cang, H. et al. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature 469, 385–388 (2011).

  11. 11.

    Ropp, C. et al. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot. Nat. Commun. 4, 1447 (2013).

  12. 12.

    Wu, D., Liu, Z., Sun, C. & Zhang, X. Super-resolution imaging by random adsorbed molecule probes. Nano Lett. 8, 1159–1162 (2008).

  13. 13.

    Stranahan, S. M. & Willets, K. A. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 10, 3777–3784 (2010).

  14. 14.

    Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43, 3854–3864 (2014).

  15. 15.

    Wertz, E., Isaacoff, B. P., Flynn, J. D. & Biteen, J. S. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. Nano Lett. 15, 2662–2670 (2015).

  16. 16.

    Raab, M., Vietz, C., Stefani, F. D., Acuna, G. P. & Tinnefeld, P. Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nat. Commun. 8, 13966 (2017).

  17. 17.

    Fu, B., Isaacoff, B. P. & Biteen, J. S. Super-resolving the actual position of single fluorescent molecules coupled to a plasmonic nanoantenna. ACS Nano 11, 8978–8987 (2017).

  18. 18.

    Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature 405, 325–328 (2000).

  19. 19.

    Kühn, S., Hettich, C., Schmitt, C., Poizat, J.-P. & Sandoghdar, V. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 202, 2–6 (2001).

  20. 20.

    Nitzsche, B. et al. in Methods in Cell Biology Vol. 95 (eds. Wilson, L. & Correia, J. J.) Ch. 14, 247–271 (Academic Press, Cambridge, 2010).

  21. 21.

    Hess, H., Clemmens, J., Howard, J. & Vogel, V. Surface imaging by self-propelled nanoscale probes. Nano Lett. 2, 113–116 (2002).

  22. 22.

    Ruhnow, F., Zwicker, D. & Diez, S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 100, 2820–2828 (2011).

  23. 23.

    Palacci, H. et al. Velocity fluctuations in kinesin-1 gliding motility assays originate in motor attachment geometry variations. Langmuir 32, 7943–7950 (2016).

  24. 24.

    Anikeyev, V., Temnov, V. V., Woggon, U., Devaux, E. & Ebbesen, T. W. Propagation oscillations in the near-field response of traveling surface waves launched by metallic nanoapertures. Appl. Phys. B 93, 171–176 (2008).

  25. 25.

    Nitzsche, B., Ruhnow, F. & Diez, S. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nat. Nanotech. 3, 552–556 (2008).

  26. 26.

    Kerssemakers, J., Howard, J., Hess, H. & Diez, S. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc. Natl Acad. Sci. USA 103, 15812–15817 (2006).

  27. 27.

    Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

  28. 28.

    Gür, F. N., Schwarz, F. W., Ye, J., Diez, S. & Schmidt, T. L. Toward self-assembled plasmonic devices: high-yield arrangement of gold nanoparticles on DNA origami templates. ACS Nano 10, 5374–5382 (2016).

  29. 29.

    van den Heuvel, M. G. L., Butcher, C. T., Smeets, R. M. M., Diez, S. & Dekker, C. High rectifying efficiencies of microtubule motility on kinesin-coated gold nanostructures. Nano Lett. 5, 1117–1122 (2005).

  30. 30.

    Sun, Y., McKenna, J. D., Murray, J. M., Ostap, E. M. & Goldman, Y. E. Parallax: high accuracy three-dimensional single molecule tracking using split images. Nano Lett. 9, 2676–2682 (2009).

  31. 31.

    Castoldi, M. & Popov, A. V. Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003).

  32. 32.

    Korten, T., Chaudhuri, S., Tavkin, E., Braun, M. & Diez, S. Kinesin-1 expressed in insect cells improves microtubule in vitro gliding performance, long-term stability and guiding efficiency in nanostructures. IEEE Trans. NanoBioscience 15, 62–69 (2016).

  33. 33.

    Kern, W. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887–1892 (1990).

  34. 34.

    Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

Download references

Acknowledgements

We thank M. Braun, R. Heintzman, A. Mitra, C. Reuther and T. Korten for fruitful discussions as well as C. Bräuer and T. Korten for supplying the kinesin-1 enzyme and technical support. This work was financially supported by the German Research Foundation (DFG) through the Center for Advancing Electronics Dresden (cfaed), the Heisenberg programme (DI 1226/4-1 to S.D.) and the European Social Funds (ESF) (contract 100111059, MindNano). H.G. and B.H. acknowledge financial support from the DFG via grant He5618/1-1 and a Reinhart Koselleck project.

Author information

Author notes

    • Hannah S. Heil

    Present address: Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany

    • Friedrich W. Schwarz

    Present address: Kurfürst-Moritz-Schule, Moritzburg, Germany

  1. These authors contributed equally: Heiko Groß, Hannah S. Heil.

Affiliations

  1. Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Würzburg, Germany

    • Heiko Groß
    •  & Bert Hecht
  2. B CUBE – Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany

    • Hannah S. Heil
    • , Jens Ehrig
    • , Friedrich W. Schwarz
    •  & Stefan Diez
  3. cfaed – Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany

    • Friedrich W. Schwarz
    •  & Stefan Diez
  4. Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

    • Stefan Diez

Authors

  1. Search for Heiko Groß in:

  2. Search for Hannah S. Heil in:

  3. Search for Jens Ehrig in:

  4. Search for Friedrich W. Schwarz in:

  5. Search for Bert Hecht in:

  6. Search for Stefan Diez in:

Contributions

H.S.H., F.W.S., B.H. and S.D. conceived and designed the experiments. H.S.H. and F.W.S. performed the experiments. H.S.H., J.E. and F.W.S. analysed the data. H.G. performed the numerical simulations. All authors contributed to writing the paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Bert Hecht or Stefan Diez.

Supplementary information

  1. Supplementary Information

    Supplementary Figs. 1–6; Supplementary Sections 1–2

  2. Supplementary Video 1

    QD-labelled microtubules gliding on a gold surface with nanoslits.

  3. Supplementary Video 2

    QD-labelled microtubules gliding on a bare glass substrate.

  4. Supplementary Video 3

    Close-up of QD-labelled microtubules gliding on a gold surface with nanoslits.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-018-0123-1