Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunnelling spectroscopy of gate-induced superconductivity in MoS2

A Publisher Correction to this article was published on 17 May 2018

This article has been updated

Abstract

The ability to gate-induce superconductivity by electrostatic charge accumulation is a recent breakthrough in physics and nanoelectronics. With the exception of LaAlO3/SrTiO3 interfaces, experiments on gate-induced superconductors have been largely confined to resistance measurements, which provide very limited information about the superconducting state. Here, we explore gate-induced superconductivity in MoS2 by performing tunnelling spectroscopy to determine the energy-dependent density of states (DOS) for different levels of electron density n. In the superconducting state, the DOS is strongly suppressed at energy smaller than the gap Δ, which is maximum (Δ ~2 meV) for n of ~1 × 1014 cm−2 and decreases monotonously for larger n. A perpendicular magnetic field B generates states at E < Δ that fill the gap, but a 20% DOS suppression of superconducting origin unexpectedly persists much above the transport critical field. Conversely, an in-plane field up to 10 T leaves the DOS entirely unchanged. Our measurements exclude that the superconducting state in MoS2 is fully gapped and reveal the presence of a DOS that vanishes linearly with energy, the explanation of which requires going beyond a conventional, purely phonon-driven Bardeen–Cooper–Schrieffer mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanofabricated MoS2 devices for tunnelling spectroscopy measurements.
Fig. 2: Temperature evolution of the bias-dependent tunnelling conductance.
Fig. 3: Investigating the nature of the superconducting state in MoS2.
Fig. 4: Magnetic field dependence of the tunnelling DOS.

Similar content being viewed by others

Change history

  • 17 May 2018

    In the version of this Article originally published, an error during typesetting led to the curve in Fig. 2a being shifted to the right, and the curves in the inset of Fig. 2a being displaced. The figure has now been corrected in all versions of the Article; the original and corrected Fig. 2a are shown below.

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  CAS  Google Scholar 

  2. Giaever, I. Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960).

    Article  Google Scholar 

  3. Giaever, I. Electron tunneling between two superconductors. Phys. Rev. Lett. 5, 464–466 (1960).

    Article  CAS  Google Scholar 

  4. Giaever, I., Hart, H. R. & Megerle, K. Tunneling into superconductors at temperatures below 1 K. Phys. Rev. 126, 941–948 (1962).

    Article  CAS  Google Scholar 

  5. McMillan, W. L. & Rowell, J. M. Lead phonon spectrum calculated from superconducting density of states. Phys. Rev. Lett. 14, 108–112 (1965).

    Article  CAS  Google Scholar 

  6. Parks, R. D. Superconductivity: Part 1 (Marcel Dekker, New York, 1969).

  7. Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  CAS  Google Scholar 

  8. Yin, Y., Zech, M., Williams, T. L. & Hoffman, J. E. Scanning tunneling microscopy and spectroscopy on iron-pnictides. Phys. C Supercond. 469, 535–544 (2009).

    Article  CAS  Google Scholar 

  9. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    Article  CAS  Google Scholar 

  10. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  11. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  12. Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).

    Article  CAS  Google Scholar 

  13. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

    Article  CAS  Google Scholar 

  14. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

    Article  CAS  Google Scholar 

  15. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotech. 6, 408–412 (2011).

    Article  CAS  Google Scholar 

  16. Taniguchi, K., Matsumoto, A., Shimotani, H. & Takagi, H. Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2. Appl. Phys. Lett. 101, 42603 (2012).

    Article  Google Scholar 

  17. Shi, W. et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

    Article  CAS  Google Scholar 

  18. Jo, S., Costanzo, D., Berger, H. & Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2. Nano Lett. 15, 1197–1202 (2015).

    Article  CAS  Google Scholar 

  19. Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotech. 11, 339–344 (2016).

    Article  CAS  Google Scholar 

  20. Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2016).

    Article  CAS  Google Scholar 

  21. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  CAS  Google Scholar 

  22. Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article  CAS  Google Scholar 

  23. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  24. Dvir, T. et al. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions. Nat. Commun. 9, 598 (2018).

    Article  CAS  Google Scholar 

  25. de Gennes, P. G. Superconductivity of Metals and Alloys (CRC Press, Boca Raton, 1999).

  26. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, New York, 2004).

  27. Tsen, A. W. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys. 12, 208–212 (2016).

    Article  CAS  Google Scholar 

  28. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85, 205302 (2012).

    Article  Google Scholar 

  29. Yuan, N. F. Q., Mak, K. F. & Law, K. T. Possible topological superconducting phases of MoS2. Phys. Rev. Lett. 113, 97001 (2014).

    Article  Google Scholar 

  30. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  CAS  Google Scholar 

  31. Giubileo, F. et al. Two-gap state density in MgB2: a true bulk property or a proximity effect? Phys. Rev. Lett. 87, 177008 (2001).

    Article  CAS  Google Scholar 

  32. Iavarone, M. et al. Two-band superconductivity in MgB2. Phys. Rev. Lett. 89, 187002 (2002).

    Article  CAS  Google Scholar 

  33. Schmidt, H., Zasadzinski, J. F., Gray, K. E. & Hinks, D. G. Break-junction tunneling on MgB2. Phys. C Supercond. 385, 221–232 (2003).

    Article  CAS  Google Scholar 

  34. Boaknin, E. et al. Heat conduction in the vortex state of NbSe2: evidence for multiband superconductivity. Phys. Rev. Lett. 90, 117003 (2003).

    Article  Google Scholar 

  35. Noat, Y. et al. Quasiparticle spectra of 2H-NbSe2: two-band superconductivity and the role of tunneling selectivity. Phys. Rev. B 92, 134510 (2015).

    Article  Google Scholar 

  36. Roldán, R., Cappelluti, E. & Guinea, F. Interactions and superconductivity in heavily doped MoS2. Phys. Rev. B 88, 54515 (2013).

    Article  Google Scholar 

  37. Ge, Y. & Liu, A. Y. Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction. Phys. Rev. B 87, 241408 (2013).

    Article  Google Scholar 

  38. Khezerlou, M. & Goudarzi, H. Transport properties of spin–triplet superconducting monolayer MoS2. Phys. Rev. B 93, 115406 (2016).

    Article  Google Scholar 

  39. Nakamura, Y. & Yanase, Y. Odd-parity superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B 96, 54501 (2017).

    Article  Google Scholar 

  40. Hsu, Y.-T., Vaezi, A., Fischer, M. H. & Kim, E.-A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 8, 14985 (2017).

    Article  CAS  Google Scholar 

  41. Mazin, I. I. & Schmalian, J. Pairing symmetry and pairing state in ferropnictides: theoretical overview. Phys. C Supercond. 469, 614–627 (2009).

    Article  CAS  Google Scholar 

  42. Mazin, I. I. Superconductivity gets an iron boost. Nature 464, 183–186 (2010).

    Article  CAS  Google Scholar 

  43. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  Google Scholar 

  44. Bang, Y. & Stewart, G. R. Superconducting properties of the s+/− wave state: Fe-based superconductors. J. Phys. Condens. Matter 29, 123003 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge A. Ferreira for continued technical support of the experiments. The authors also thank K.T. Law for extended and extremely useful discussions. Financial support from the Swiss National Science Foundation, the NCCR QSIT and the EU Graphene Flagship project is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

D.C., H.Z. and B.A.R. fabricated the devices and performed electrical measurements. D.C. and H.Z. analysed the data. H.B. provided high-quality MoS2 crystals. A.F.M. conceived the experiment, directed the research and wrote the manuscript. All authors read the manuscript and provided comments.

Corresponding author

Correspondence to Alberto F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Supplementary Figures 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costanzo, D., Zhang, H., Reddy, B.A. et al. Tunnelling spectroscopy of gate-induced superconductivity in MoS2. Nature Nanotech 13, 483–488 (2018). https://doi.org/10.1038/s41565-018-0122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0122-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing