Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bio-hybrid DNA rotor–stator nanoengine that moves along predefined tracks

Abstract

Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor–stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembly of the DNA catenane rotary motor.
Fig. 2: Single-molecule FRET studies of the DNA catenane rotatory motor.
Fig. 3: The nanoengine moves along predefined tracks.
Fig. 4: Analysis of the RNA sequential hybridization to iSteps during RCT of the catenane walker.
Fig. 5: Kinetics of nanoengine walking on a path with varying distances between steps.

Similar content being viewed by others

References

  1. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  Google Scholar 

  2. Spetzler, D. et al. Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration. Biochemistry 48, 7979–7985 (2009).

    Article  CAS  Google Scholar 

  3. Macnab, R. M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003).

    Article  CAS  Google Scholar 

  4. Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).

    Article  CAS  Google Scholar 

  5. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  6. Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  7. Ketterer, P. Willner, E. M. & Dietz, H. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components. Sci. Adv. 2, e1501209 (2016).

    Article  Google Scholar 

  8. van den Heuvel, M. G. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

    Article  Google Scholar 

  9. Goel, A. & Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotech. 3, 465–475 (2008).

    Article  CAS  Google Scholar 

  10. Giselbrecht, S., Rapp, B. E. & Niemeyer, C. M. The chemistry of cyborgs–interfacing technical devices with organisms. Angew. Chem. Int. Ed. 52, 13942–13957 (2013).

    Article  CAS  Google Scholar 

  11. Feringa, B. L. In control of motion: from molecular switches to molecular motors. Acc. Chem. Res. 34, 504–513 (2001).

    Article  CAS  Google Scholar 

  12. von Delius, M. & Leigh, D. A. Walking molecules. Chem. Soc. Rev. 40, 3656–3676 (2011).

    Article  Google Scholar 

  13. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  Google Scholar 

  14. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  Google Scholar 

  15. Daubendiek, S. L., Ryan, K. & Kool, E. T. Rolling-circle RNA synthesis: circular oligonucleotides as efficient substrates for T7 RNA polymerase. J. Am. Chem. Soc. 117, 7818–7819 (1995).

    Article  CAS  Google Scholar 

  16. Elrod-Erickson, M., Rould, M. A., Nekludova, L. & Pabo, C. O. Zif268 protein–DNA complex refined at 1.6 Å: a model system for understanding zinc finger–DNA interactions. Structure 4, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  17. Nakata, E. et al. Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. Angew. Chem. Int. Ed. 51, 2421–2424 (2012).

    Article  CAS  Google Scholar 

  18. Ngo, T. A., Nakata, E., Saimura, M. & Morii, T. Spatially organized enzymes drive cofactor-coupled cascade reactions. J. Am. Chem. Soc. 138, 3012–3021 (2016).

    Article  CAS  Google Scholar 

  19. Lohmann, F., Valero, J. & Famulok, M. A novel family of structurally stable double stranded DNA catenanes. Chem. Commun. 50, 6091–6093 (2014).

    Article  CAS  Google Scholar 

  20. Ackermann, D., Jester, S. S. & Famulok, M. Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. Angew. Chem. Int. Ed. 51, 6771–6775 (2012).

    Article  CAS  Google Scholar 

  21. Ackermann, D. et al. A double-stranded DNA rotaxane. Nat. Nanotech. 5, 436–442 (2010).

    Article  CAS  Google Scholar 

  22. Weigandt, J., Chung, C.-L., Jester, S.-S. & Famulok, M. A daisy chain rotaxane interlocked DNA nanostructure. Angew. Chem. Int. Ed. 55, 5512–5516 (2016).

    Article  CAS  Google Scholar 

  23. Lionberger, T. A. & Meyhofer, E. Bending the rules of transcriptional repression: tightly looped DNA directly represses T7 RNA polymerase. Biophys. J. 99, 1139–1148 (2010).

    Article  CAS  Google Scholar 

  24. Lee, W., von Hippel, P. H. & Marcus, A. H. Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments. Nucleic Acids Res 42, 5967–5977 (2014).

    Article  CAS  Google Scholar 

  25. Yang, W. P., Wu, H. & Barbas, C. F. 3rd Surface plasmon resonance based kinetic studies of zinc finger–DNA interactions. J. Immunol. Methods 183, 175–182 (1995).

    Article  CAS  Google Scholar 

  26. Ko, S. H., Gallatin, G. M. & Liddle, J. A. Nanomanufacturing with DNA origami: factors affecting the kinetics and yield of quantum dot binding. Adv. Funct. Mater. 22, 1015–1023 (2012).

    Article  CAS  Google Scholar 

  27. Abendroth, J. M., Bushuyev, O. S., Weiss, P. S. & Barrett, C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015).

    Article  CAS  Google Scholar 

  28. Pan, J. et al. Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers. Sci. Adv. 3, e1601600 (2017).

    Article  Google Scholar 

  29. Pan, J., Li, F., Cha, T. G., Chen, H. & Choi, J. H. Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015).

    Article  Google Scholar 

  30. Yehl, K. et al. High-speed DNA-based rolling motors powered by RNase H. Nat. Nanotech. 11, 184–190 (2016).

    Article  CAS  Google Scholar 

  31. Tomov, T. E. et al. DNA bipedal motor achieves a large number of steps due to operation using microfluidics-based interface. ACS Nano 11, 4002–4008 (2017).

    Article  CAS  Google Scholar 

  32. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  Google Scholar 

  33. Jung, C., Allen, P. B. & Ellington, A. D. A stochastic DNA walker that traverses a microparticle surface. Nat. Nanotech. 11, 157–163 (2016).

    Article  CAS  Google Scholar 

  34. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    Article  CAS  Google Scholar 

  35. Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  CAS  Google Scholar 

  36. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  37. Lu, C. H., Cecconello, A., Elbaz, J., Credi, A. & Willner, I. A three-station DNA catenane rotary motor with controlled directionality. Nano Lett. 13, 2303–2308 (2013).

    Article  CAS  Google Scholar 

  38. Venkataraman, S., Dirks, R. M., Rothemund, P. W., Winfree, E. & Pierce, N. A. An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotech. 2, 490–494 (2007).

    Article  Google Scholar 

  39. Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    Article  CAS  Google Scholar 

  40. Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed. 44, 4358–4361 (2005).

    Article  CAS  Google Scholar 

  41. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  42. Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    Article  CAS  Google Scholar 

  43. Liu, M. H. et al. Biomimetic autonomous enzymatic nanowalker of high fuel efficiency. ACS Nano 10, 5882–5890 (2016).

    Article  CAS  Google Scholar 

  44. Cheng, J. et al. Bipedal nanowalker by pure physical mechanisms. Phys. Rev. Lett. 109, 238104 (2012).

    Article  Google Scholar 

  45. Loh, I. Y., Cheng, J., Tee, S. R., Efremov, A. & Wang, Z. From bistate molecular switches to self-directed track-walking nanomotors. ACS Nano 8, 10293–10304 (2014).

    Article  CAS  Google Scholar 

  46. Bath, J., Green, S. J., Allen, K. E. & Turberfield, A. J. Mechanism for a directional, processive, and reversible DNA motor. Small 5, 1513–1516 (2009).

    Article  CAS  Google Scholar 

  47. Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. A DNAzyme that walks progressively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005).

    Article  CAS  Google Scholar 

  48. Yang, Y. et al. A photoregulated DNA-based rotary system and direct observation of its rotational movement. Chemistry 23, 3979–3985 (2017).

    Article  CAS  Google Scholar 

  49. Michelotti, N., de Silva, C., Johnson-Buck, A. E., Manzo, A. J. & Walter, N. G. A bird’s eye view tracking slow nanometer-scale movements of single molecular nano-assemblies. Methods Enzymol. 475, 121–148 (2010).

    Article  CAS  Google Scholar 

  50. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  Google Scholar 

  51. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotech. 9, 531–536 (2014).

    Article  CAS  Google Scholar 

  52. Suddala, K. C. & Walter, N. G. Riboswitch structure and dynamics by smFRET microscopy. Methods Enzymol. 549, 343–373 (2014).

    Article  CAS  Google Scholar 

  53. Suddala, K. C., Wang, J., Hou, Q. & Walter, N. G. Mg2+ shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection. J. Am. Chem. Soc. 137, 14075–14083 (2015).

    Article  CAS  Google Scholar 

  54. Fu, J. et al. Assembly of multienzyme complexes on DNA nanostructures. Nat. Protoc. 11, 2243–2273 (2016).

    Article  CAS  Google Scholar 

  55. Rashid, F. et al. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1. Elife 6, e21884 (2017).

    Article  Google Scholar 

  56. Rueda, D. et al. Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. Proc. Natl Acad. Sci. USA 101, 10066–10071 (2004).

    Article  CAS  Google Scholar 

  57. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  Google Scholar 

  58. Stahl, E., Martin, T. G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. 53, 12735–12740 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Rotscheidt, V. Vieberg and D. Keppner for technical assistance, and D. Ackermann, A. Kristofferson and A. Lange for performing preliminary studies. This work was supported by the Alexander von Humboldt Foundation and the European Research Council (ERC Advanced Grant 267173), the Max-Planck Society and the University of Bonn. N.G.W. acknowledges partial funding by Department of Defense grant W911NF-12-1-0420 and NSF grant DMR-1607854. M.F. thanks H. Famulok (1932–2017) for his genuine and encouraging interest in this work.

Authors contributions

M.F. and J.V. developed the concepts of interlocked bio-hybrid nanoengines and the walking principle. J.V. performed and designed, with M.F., most of the included studies. M.F. supervised the research project. N.P., S.D. and N.G.W. planned and performed the single-molecule fluorescence experiments. All authors discussed the experimental results and contributed to writing the manuscript (J.V. and M.F. performed the bulk of the writing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Famulok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–34, Supplementary Tables 1–5 and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valero, J., Pal, N., Dhakal, S. et al. A bio-hybrid DNA rotor–stator nanoengine that moves along predefined tracks. Nature Nanotech 13, 496–503 (2018). https://doi.org/10.1038/s41565-018-0109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0109-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing