Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

Abstract

Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1,2,3,4,5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6,7,8,9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation812. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13,14,15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N–Au–N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Bond length and bond order analysis of C60 by AFM imaging with an ex situ functionalized CuOx tip.
Fig. 2: Imaging a molecule with two protruding S atoms with a CuOx tip.
Fig. 3: CuOx AFM imaging proves a theoretically predicted N–Au–N bond.
Fig. 4: Hydrogen-bonded assembly imaged with a CuOx tip reveals the intermolecular hydrogen bond structure.

References

  1. 1.

    Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  Google Scholar 

  2. 2.

    Mohn, F., Gross, L., Moll, N. & Meyer, G. Imaging the charge distribution within a single molecule. Nat. Nanotech. 7, 227–231 (2012).

    Article  Google Scholar 

  3. 3.

    de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  Google Scholar 

  4. 4.

    Zhang, J. et al. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013).

    Article  Google Scholar 

  5. 5.

    Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotech. 12, 308–311 (2017).

    Article  Google Scholar 

  6. 6.

    Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(110). Phys. Rev. Lett. 80, 2004–2007 (1998).

    Article  Google Scholar 

  7. 7.

    Mohn, F., Schuler, B., Gross, L. & Meyer, G. Different tips for high-resolution atomic force microscopy and scanning tunneling microcopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

    Article  Google Scholar 

  8. 8.

    Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article  Google Scholar 

  9. 9.

    Weymouth, A. J., Hofmann, T. & Giessibl, F. J. Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014).

    Article  Google Scholar 

  10. 10.

    Pavliček, N. et al. Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108, 086101 (2012).

    Article  Google Scholar 

  11. 11.

    Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  Google Scholar 

  12. 12.

    Hämäläinen, S. K. et al. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 113, 186102 (2014).

    Article  Google Scholar 

  13. 13.

    Bamidele, J. et al. Chemical tip fingerprinting in scanning probe microscopy of an oxidized Cu(110) surface. Phys. Rev. B 86, 155422 (2012).

    Article  Google Scholar 

  14. 14.

    Mönig, H. et al. Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7, 10233–10244 (2013).

    Article  Google Scholar 

  15. 15.

    Mönig, H. et al. Submolecular imaging by noncontact atomic force microscopy with an oxygen atom rigidly connected to a metallic probe. ACS Nano 10, 1201–1209 (2016).

    Article  Google Scholar 

  16. 16.

    Liu, S., Lu, Y.-J., Kappes, M. M. & Ibers, J. A. The structure of the C60 molecule: X-ray crystal structure determination of a twin at 110 K. Science 254, 408–410 (1991).

    Article  Google Scholar 

  17. 17.

    Sweetman, A. M. et al. Mapping the force field of a hydrogen-bonded assembly. Nat. Commun. 5, 3931 (2014).

    Article  Google Scholar 

  18. 18.

    Wang, C.-G., Cheng, Z.-H., Qiu, X.-H. & Ji, W. Unusually high electron density in an intermolecular non-bonding region: role of metal substrate. Chin. Chem. Lett. 28, 759–764 (2017).

    Article  Google Scholar 

  19. 19.

    Van der Lit, J. et al. Modeling the self-assembly of organic molecules in 2D molecular layers with different structures. J. Phys. Chem. C 120, 318–323 (2016).

    Article  Google Scholar 

  20. 20.

    Van der Lit, J., Di Cicco, F., Hapala, P., Jelinek, P. & Swart, I. Submolecular resolution imaging of molecules by atomic force microscopy: the influence of the electrostatic force. Phys. Rev. Lett. 116, 096102 (2016).

    Article  Google Scholar 

  21. 21.

    Weiss, C., Wagner, C., Temirov, R. & Tautz, F. S. Direct imaging of intermolecular bonds in scanning tunneling microscopy. J. Am. Chem. Soc. 132, 11864–11865 (2010).

    Article  Google Scholar 

  22. 22.

    Han, Z. et al. Imaging the halogen bond in self-assembled halogenbenzenes on silver. Science 358, 206–210 (2017).

    Article  Google Scholar 

  23. 23.

    Rohlfing, M., Temirov, R. & Tautz, F. S. Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111). Phys. Rev. B 76, 115421 (2007).

    Article  Google Scholar 

  24. 24.

    Desiraju, G. R. A bond by any other name. Angew. Chem. Int. Ed. 50, 52–60 (2011).

    Article  Google Scholar 

  25. 25.

    Kelly, R. E. A., Lee, Y. J. & Kantorovich, L. N. Homopairing possibilities of the DNA base adenine. J. Phys. Chem. B 109, 11933–11939 (2005).

    Article  Google Scholar 

  26. 26.

    Schneiderbauer, M., Emmrich, M., Weymouth, A. J. & Giessibl, F. J. CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces. Phys. Rev. Lett. 112, 166102 (2014).

    Article  Google Scholar 

  27. 27.

    Ellner, M. et al. The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 16, 1974–1980 (2016).

    Article  Google Scholar 

  28. 28.

    Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).

    Article  Google Scholar 

  29. 29.

    SPIP V5.1.11 Scanning probe image processor (Hørsholm: Image Metrology); http://www.imagemet.com.

  30. 30.

    Kern, K. et al. Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu(100)-(2×1)O. Phys. Rev. Lett. 67, 855–858 (1991).

    Article  Google Scholar 

  31. 31.

    Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  Google Scholar 

  32. 32.

    Turbomole V6.3 (University of Karlsruhe and Forschungszentrum Karlsruhe, Turbomole, 2009); http://www.turbomole.com.

  33. 33.

    Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  Google Scholar 

  34. 34.

    Grimme, S. J. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

  35. 35.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  36. 36.

    Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  Google Scholar 

  37. 37.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  38. 38.

    Klimeš, J., Bowler, D. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).

    Article  Google Scholar 

  39. 39.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  40. 40.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  41. 41.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  42. 42.

    Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft through collaborative research centres TRR 61 and SFB 858, and through projects MO 2345/4-1, AM 460/2-1, and FU 299/19. W.J. thanks the National Science Foundation of China for support through grant no. 11622437. D. Yesilpinar is thanked for technical support.

Author information

Affiliations

Authors

Contributions

H.M. conceived the experiments. H.M., O.D.A., A.T. and L.L. performed the experiments. H.M., S.A. and O.D.A. analysed the data. S.A., Z.H., W.J. and M.R. performed the DFT simulations. M.C. and C.A.S. synthesized the DBTH molecules. S.A. and H.F. contributed significantly to the scientific discussion of the project. All authors discussed the results and commented on the manuscript, which was drafted by H.M.

Corresponding author

Correspondence to Harry Mönig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mönig, H., Amirjalayer, S., Timmer, A. et al. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nature Nanotech 13, 371–375 (2018). https://doi.org/10.1038/s41565-018-0104-4

Download citation

Further reading