Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmon-induced carrier polarization in semiconductor nanocrystals

Abstract

Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3,4,5,6,7,8,9,10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon–exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon–exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin–orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon–exciton and plasmon–spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Absorption and MCD of LSPR in semiconductor nanocrystals.
Fig. 2: Electron polarization by magnetoplasmonic modes in ITO nanocrystals.
Fig. 3: Spin-induced manipulation of Zeeman splitting in plasmonic IMO nanocrystals.
Fig. 4: Control of the charge carrier polarization in IMO nanocrystals.

References

  1. 1.

    Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  2. 2.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  Google Scholar 

  3. 3.

    Wang, T. & Radovanovic, P. V. Free electron concentration in colloidal indium tin oxide nanocrystals determined by their size and structure. J. Phys. Chem. C 115, 406–413 (2011).

    Article  Google Scholar 

  4. 4.

    Buonsanti, R., Llordes, A., Aloni, S., Helms, B. A. & Milliron, D. J. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett. 11, 4706–4710 (2011).

    Article  Google Scholar 

  5. 5.

    Fang, H., Hegde, M., Yin, P. & Radovanovic, P. V. Tuning plasmon resonance of In2O3 nanocrystals throughout the mid-infrared region by competition between electron activation and trapping. Chem. Mater. 29, 4970–4979 (2017).

    Article  Google Scholar 

  6. 6.

    Gordon, T. R. et al. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett. 13, 2857–2863 (2013).

    Article  Google Scholar 

  7. 7.

    Faucheaux, J. A. & Jain, P. K. Plasmons in photocharged ZnO nanocrystals revealing the nature of charge dynamics. J. Phys. Chem. Lett. 4, 3024–3030 (2013).

    Article  Google Scholar 

  8. 8.

    Schimpf, A. M., Thakkar, N., Gunthardt, C. E., Masiello, D. J. & Gamelin, D. R. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. ACS Nano 8, 1065–1072 (2014).

    Article  Google Scholar 

  9. 9.

    Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011).

    Article  Google Scholar 

  10. 10.

    Gordon, T. R. et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 134, 6751–6761 (2012).

    Article  Google Scholar 

  11. 11.

    Pineider, F. et al. Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett. 13, 4785–4789 (2013).

    Article  Google Scholar 

  12. 12.

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  13. 13.

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  Google Scholar 

  14. 14.

    Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  Google Scholar 

  15. 15.

    Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).

    Article  Google Scholar 

  16. 16.

    Shim, M. & Guyot-Sionnest, P. n-type colloidal semiconductor nanocrystals. Nature 407, 981–983 (2000).

    Article  Google Scholar 

  17. 17.

    Comin, A. & Manna, L. New materials for tunable plasmonic colloidal nanocrystals. Chem. Soc. Rev. 43, 3957–3975 (2014).

    Article  Google Scholar 

  18. 18.

    Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414–420 (2015).

    Article  Google Scholar 

  19. 19.

    Lee, J., Hernandez, P., Lee, J., Govorov, A. O. & Kotov, N. A. Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 6, 291–295 (2007).

    Article  Google Scholar 

  20. 20.

    Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010).

    Article  Google Scholar 

  21. 21.

    Uchida, K. et al. Generation of spin currents by surface plasmon resonance. Nat. Commun. 6, 5910 (2015).

    Article  Google Scholar 

  22. 22.

    Schimpf, A. M., Lounis, S. D., Runnerstrom, E. L., Milliron, D. J. & Gamelin, D. R. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. J. Am. Chem. Soc. 137, 518–524 (2015).

    Article  Google Scholar 

  23. 23.

    Piepho, S. B. & Schatz, P. N. Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism (Wiley, New York, 1983).

    Google Scholar 

  24. 24.

    Ding, D. et al. Non-stoichiometric MoO3–x quantum dots as a light-harvesting material for interfacial water evaporation. Chem. Commun. 53, 6744–6747 (2017).

    Article  Google Scholar 

  25. 25.

    Fedorov, A. V., Baranov, A. V. & Inoue, K. Exciton–phonon coupling in semiconductor quantum dots: resonant Raman scattering. Phys. Rev. B 56, 7491–7502 (1997).

    Article  Google Scholar 

  26. 26.

    Radović, M. et al. Infrared study of plasmon–phonon coupling in pure and Nd-doped CeO2−y nanocrystals. J. Phys. D 48, 065301 (2015).

    Article  Google Scholar 

  27. 27.

    Beye, M. et al. Dynamics of electron–phonon scattering: crystal- and angular-momentum transfer probed by resonant inelastic -ray scattering. Phys. Rev. Lett. 103, 237401 (2009).

    Article  Google Scholar 

  28. 28.

    Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article  Google Scholar 

  29. 29.

    Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Article  Google Scholar 

  30. 30.

    Hegde, M., Farvid, S. S., Hosein, I. D. & Radovanovic, P. V. Tuning manganese dopant spin interactions in single GaN nanowires at room temperature. ACS Nano 5, 6365–6373 (2011).

    Article  Google Scholar 

  31. 31.

    Johns, R. W. et al. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals. Nat. Commun. 7, 11583 (2016).

    Article  Google Scholar 

  32. 32.

    Hutfluss, L. N. & Radovanovic, P. V. Controlling the mechanism of phase transformation of colloidal In2O3 nanocrystals. J. Am. Chem. Soc. 137, 1101–1108 (2015).

    Article  Google Scholar 

  33. 33.

    Wang, T. & Radovanovic, P. V. In-situ enhancement of the blue photoluminescence of colloidal Ga2O3 nanocrystals by promotion of defect formation in reducing conditions. Chem. Commun. 47, 7161–7163 (2011).

    Article  Google Scholar 

  34. 34.

    Dave, N., Pautler, B. G., Farvid, S. S. & Radovanovic, P. V. Synthesis and surface control of colloidal Cr3+-doped SnO2 transparent magnetic semiconductor nanocrystals. Nanotechnology 21, 134023 (2010).

    Article  Google Scholar 

  35. 35.

    Mason, W. R. A Practical Guide to Magnetic Circular Dichroism Spectroscopy (Wiley, Hoboken, 2007).

    Book  Google Scholar 

  36. 36.

    Ju, L. et al. Interplay between size, composition and phase transition of nanocrystalline Cr3+-doped BaTiO3 as a path to multiferroism in perovskite-type oxides. J. Am. Chem. Soc. 134, 1136–1146 (2012).

    Article  Google Scholar 

  37. 37.

    Farvid, S. S. et al. Evidence of charge-transfer ferromagnetism in transparent diluted magnetic oxide nanocrystals: switching the mechanism of magnetic interactions. J. Am. Chem. Soc. 136, 7669–7679 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-2015-67304032), Canada Foundation for Innovation (Project no. 204782) and the University of Waterloo (UW-Bordeaux Collaborative Research Grant). This research was undertaken thanks, in part, to funding from the Canada First Research Excellence Fund. P.V.R. acknowledges the support from the Canada Research Chairs Program (NSERC).

Author information

Affiliations

Authors

Contributions

P.Y. and P.V.R. designed the experiments. P.Y., Y.T. and H.F. prepared and characterized the samples. P.Y. and Y.T. conducted MCD measurements. P.Y. analysed the data. M.H. performed the DFT calculations and analysis. P.V.R. and P.Y. interpreted the results and wrote the manuscript with contributions from the other authors. P.V.R. conceived and supervised the project.

Corresponding author

Correspondence to Pavle V. Radovanovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Text

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Tan, Y., Fang, H. et al. Plasmon-induced carrier polarization in semiconductor nanocrystals. Nature Nanotech 13, 463–467 (2018). https://doi.org/10.1038/s41565-018-0096-0

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research