Chiral magnetic skyrmions1,2 are nanoscale vortex-like spin textures that form in the presence of an applied magnetic field in ferromagnets that support the Dzyaloshinskii–Moriya interaction (DMI) because of strong spin–orbit coupling and broken inversion symmetry of the crystal3,4. In sharp contrast to other systems5,6 that allow for the formation of a variety of two-dimensional (2D) skyrmions, in chiral magnets the presence of the DMI commonly prevents the stability and coexistence of topological excitations of different types7. Recently, a new type of localized particle-like object—the chiral bobber (ChB)—was predicted theoretically in such materials8. However, its existence has not yet been verified experimentally. Here, we report the direct observation of ChBs in thin films of B20-type FeGe by means of quantitative off-axis electron holography (EH). We identify the part of the temperature–magnetic field phase diagram in which ChBs exist and distinguish two mechanisms for their nucleation. Furthermore, we show that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrmions and bobbers.

  • Subscribe to Nature Nanotechnology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101 (1989).

  2. 2.

    Ivanov, B. A., Stephanovich, V. A. & Zhmudskii, A. A. Magnetic vortices—the microscopic analogs of magnetic bubbles. J. Magn. Magn. Mater. 88, 116 (1990).

  3. 3.

    Dzyaloshinskii, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

  4. 4.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  5. 5.

    Belavin, A. A. & Polyakov, A. M. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22, 245 (1975).

  6. 6.

    Piette, B. M. A. G., Schroers, B. J. & Zakrzewski, W. J. Multisolitons in a two-dimensional Skyrme model. Z. Phys. C. 65, 165–174 (1995).

  7. 7.

    Koshibae, W. & Nagaosa, N. Theory of antiskyrmions in magnets. Nat. Commun. 7, 10542 (2016).

  8. 8.

    Rybakov, F. N., Borisov, A. B., Blügel, S. & Kiselev, N. S. New type of particlelike state in chiral magnets. Phys. Rev. Lett. 115, 117201 (2015).

  9. 9.

    Kanazawa, N., Seki, S. & Tokura, Y. Noncentrosymmetric magnets hosting magnetic skyrmions. Adv. Mater. 29, 1603227 (2017).

  10. 10.

    Yu, X. et al. Variation of skyrmion forms and their stability in MnSi thin plates. Phys. Rev. B 91, 054411 (2015).

  11. 11.

    Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

  12. 12.

    Yu, X. Z. et al. Real space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

  13. 13.

    Shibata, K. et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling. Nat. Nanotech. 8, 723–728 (2013).

  14. 14.

    Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

  15. 15.

    Li, W. et al. Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys. Rev. B 93, 060409 (2016).

  16. 16.

    Dzyaloshinskii, I. E. Theory of helicoidal structures in antiferromagnets. III. Sov. Phys. JETP 20, 665 (1965).

  17. 17.

    Lebech, B., Bernhard, J. & Freltoft, T. Magnetic structures of cubic FeGe studied by small-angle neutron scattering. J. Phys. Condens. Matter 35, 6105 (1989).

  18. 18.

    Rybakov, F. N., Borisov, A. B. & Bogdanov, A. N. Three-dimensional skyrmion states in thin films of cubic helimagnets. Phys. Rev. B 87, 094424 (2013).

  19. 19.

    Rybakov, F. N., Borisov, A. B., Blügel, S. & Kiselev, N. S. New spiral states and skyrmion lattice in 3D model of chiral magnet. New. J. Phys. 18, 045002 (2016).

  20. 20.

    Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

  21. 21.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449–454 (2016).

  22. 22.

    Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. D. 44, 392001 (2011).

  23. 23.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

  24. 24.

    Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 4, 271–280 (2009).

  25. 25.

    Park, H. S. et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotech. 9, 337–342 (2014).

  26. 26.

    Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

  27. 27.

    Schütte, C. & Rosch, A. Dynamics and energetics of emergent magnetic monopoles in chiral magnets. Phys. Rev. B 90, 174432 (2014).

  28. 28.

    Leonov, A. O., Monchesky, T. L., Loudon, J. C. & Bogdanov, A. N. Three-dimensional chiral skyrmions with attractive interparticle interactions. J. Phys. Condens. Matter 28, 35 (2016).

  29. 29.

    Ahmed, A. S. et al. Chiral bobber formation in epitaxial FeGe/Si(111) films. Preprint at http://arXiv.org/abs/1706.08248v1 (2017).

  30. 30.

    Du, H. et al. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat. Commun. 6, 8504 (2015).

  31. 31.

    Jin, C. et al. Control of morphology and formation of highly geometrically confined magnetic skyrmions. Nat. Commun. 8, 15569 (2017).

  32. 32.

    Chang, S. L. Y., Dwyer, C., Barthel, J., Boothroyd, C. B. & Dunin-Borkowski, R. E. Performance of a direct detection camera for off-axis electron holography. Ultramicroscopy 161, 90–97 (2016).

  33. 33.

    Voelkl, E. & Tang, D. Approaching routine 2π/1000 phase resolution for off-axis electron holography. Ultramicroscopy 110, 447–459 (2010).

  34. 34.

    McLeod, R. A., Bergen, M. & Malac, M. Phase measurement error in summation of electron holography series. Ultramicroscopy 141, 38–50 (2014).

  35. 35.

    Lichte, H. & Lehmann, M. Electron holography—basics and applications. Rep. Prog. Phys. 71, 016102 (2008).

  36. 36.

    Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

  37. 37.

    Shibata, K. et al. Temperature and magnetic field dependence of the internal and lattice structures of skyrmions by off-axis electron holography. Phys. Rev. Lett. 118, 087202 (2017).

  38. 38.

    Döring, W. Point singularities in micromagnetism. J. Appl. Phys. 39, 1006 (1968).

  39. 39.

    Thiaville, A., Garca, J. M., Dittrich, R., Miltat, J. & Schrefl, T. Micromagnetic study of Bloch-point-mediated vortex core reversal. Phys. Rev. B 67, 094410 (2003).

  40. 40.

    Zverev, V. V. & Filippov, B. N. Simulation of three-dimensional micromagnetic structures in magnetically uniaxial films with in-plane anisotropy: static structures. Phys. Met. Metallogr. 114, 108–115 (2013).

  41. 41.

    Mansuripur, M. Computation of electron diffraction patterns in Lorentz electron microscopy of thin magnetic films. J. Appl. Phys. 69, 2455–2464 (1991).

  42. 42.

    Kovács, A. et al. Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film. Appl. Phys. Lett. 111, 192410 (2017).

Download references


This work was supported by the National Key R&D Program of China, grant no. 2017YFA0303201, the Natural Science Foundation of China, grant nos 51622105 and 11474290, the Key Research Program of Frontier Sciences, CAS, grant no. QYZDB-SSW-SLH009, the Key Research Program of the Chinese Academy of Science, grant no. KJZD-SW-M01, the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology, grant no. 2016FXCX001 and the Youth Innovation Promotion Association CAS no. 2015267. F.Z. and R.E.D.-B. acknowledge the European Union for funding through the Marie Curie Initial Training Network SIMDALEE2. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programmer (FP7/2007–2013)/ERC grant agreement no. 320832. The work of F.N.R. was supported by the Swedish Research Council grant no. 642-2013-7837. The work of A.B.B. was carried out within the state assignment of FASO of Russia (theme Quantum no. 01201463332).

Author information


  1. Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany

    • Fengshan Zheng
    • , Jan Caron
    • , András Kovács
    •  & Rafal E. Dunin-Borkowski
  2. Department of Physics, KTH-Royal Institute of Technology, Stockholm, Sweden

    • Filipp N. Rybakov
  3. M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia

    • Filipp N. Rybakov
    •  & Aleksandr B. Borisov
  4. Ural Federal University, Ekaterinburg, Russia

    • Filipp N. Rybakov
    •  & Aleksandr B. Borisov
  5. National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing, China

    • Dongsheng Song
  6. The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and University of Science and Technology of China, Chinese Academy of Science (CAS), Hefei, Anhui Province, China

    • Shasha Wang
    • , Haifeng Du
    • , Mingliang Tian
    •  & Yuheng Zhang
  7. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu Province, China

    • Shasha Wang
    • , Haifeng Du
    • , Mingliang Tian
    •  & Yuheng Zhang
  8. Institute of Physics, Chinese Academy of Sciences, Beijing, China

    • Zi-An Li
  9. Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich, Germany

    • Nikolai S. Kiselev
    •  & Stefan Blügel


  1. Search for Fengshan Zheng in:

  2. Search for Filipp N. Rybakov in:

  3. Search for Aleksandr B. Borisov in:

  4. Search for Dongsheng Song in:

  5. Search for Shasha Wang in:

  6. Search for Zi-An Li in:

  7. Search for Haifeng Du in:

  8. Search for Nikolai S. Kiselev in:

  9. Search for Jan Caron in:

  10. Search for András Kovács in:

  11. Search for Mingliang Tian in:

  12. Search for Yuheng Zhang in:

  13. Search for Stefan Blügel in:

  14. Search for Rafal E. Dunin-Borkowski in:


N.S.K. and H.D. contributed to the planning of this study. F.N.R. proposed the concept and, together with A.B.B., performed the preliminary simulations. F.Z. together with D.S., S.W., N.S.K. and H.D. performed the experiments. H.D., A.K. and R.E.D.-B. supervised and designed the experiments. N.S.K. performed the micromagnetic simulations and prepared the initial version of the manuscript. J.C. calculated the theoretical phase-shift images. F.N.R., M.T., S.B. and R.E.D.-B. edited the manuscript. All of the authors discussed the results and contributed to the preparation of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Haifeng Du or Nikolai S. Kiselev.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–11, Supplementary Table 1, Supplementary references.