Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy

This article has been updated

Abstract

Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1,2,3,4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy7. This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films10, can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18,19,20,21,22, atomic-scale spatial resolution20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AFM measurements of NPc on a 14 ML NaCl film.
Fig. 2: Single-electron tunnelling spectroscopy.
Fig. 3: Analysis of the charge-state transitions as a function of sample probe voltage Vprobe.
Fig. 4: DFT analysis of NPc on NaCl(5 ML).

Similar content being viewed by others

Change history

  • 19 April 2018

    In the version of this Letter originally published, a technical error led to the following spurious text being included "Whis it it that this E_reorg term is differently highlighted than the E_reorg term in the first line of this paragraph? They are the same term."; this text has now been removed from all versions of the Letter.

References

  1. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

  2. Ratner, M. A brief history of molecular electronics. Nat. Nanotech. 8, 378–381 (2013).

    Article  Google Scholar 

  3. Tao, N. J. Electron transport in molecular junctions. Nat. Nanotech. 1, 173–181 (2006).

    Article  Google Scholar 

  4. Haiss, W. et al. Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006).

    Article  Google Scholar 

  5. Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S. & Dutton, P. L. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    Article  Google Scholar 

  6. Adams, D. M. et al. Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107, 6668–6697 (2003).

    Article  Google Scholar 

  7. Marcus, R. A. Electron transfer reactions in chemistry. Theory and Experiment. Rev. Mod. Phys. 65, 599–610 (1993).

  8. Vaissier, V., Barnes, P., Kirkpatrick, J. & Nelson, J. Influence of polar medium on the reorganization energy of charge transfer between dyes in a dye sensitized film. Phys. Chem. Chem. Phys. 15, 4804–4814 (2013).

    Article  Google Scholar 

  9. Brunschwig, B. S., Ehrenson, S. & Sutin, N. Solvent reorganization in optical and thermal electron-transfer processes. J. Phys. Chem. 90, 3657–3668 (1986).

    Article  Google Scholar 

  10. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron–phonon coupling in double-barrier tunneling junctions. Phys. Rev. Lett. 95, 225503 (2005).

    Article  Google Scholar 

  11. Manke, F., Frost, J. M., Vaissier, V., Nelson, J. & Barnes, P. R. F. Influence of a nearby substrate on the reorganization energy of hole exchange between dye molecules. Phys. Chem. Chem. Phys. 17, 7345–7354 (2015).

    Article  Google Scholar 

  12. Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nat. Nanotech. 4, 551–556 (2009).

    Article  Google Scholar 

  13. Eckermann, A. L., Feld, D. J., Shaw, J. A. & Meade, T. J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254, 1769–1802 (2010).

    Article  Google Scholar 

  14. Blackbourn, R. L. & Hupp, J. T. Probing the molecular basis of solvent reorganization in electron-transfer reactions. J. Phys. Chem. 92, 2817–2820 (1988).

    Article  Google Scholar 

  15. Bredas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).

    Article  Google Scholar 

  16. Gruhn, N. E. et al. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 124, 7918–7919 (2002).

    Article  Google Scholar 

  17. Duhm, S. et al. Charge reorganization energy and small polaron binding energy of rubrene thin films by ultraviolet photoelectron spectroscopy. Adv. Mater. 24, 901–905 (2012).

    Article  Google Scholar 

  18. Stomp, R. et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005).

    Article  Google Scholar 

  19. Bussmann, E. & Williams, C. C. Single-electron tunneling force spectroscopy of an individual electronic state in a nonconducting surface. Appl. Phys. Lett. 88, 263108 (2006).

    Article  Google Scholar 

  20. Gross, L. et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009).

    Article  Google Scholar 

  21. Roy-Gobeil, A., Miyahara, Y. & Grutter, P. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy. Nano Lett. 15, 2324–2328 (2015).

    Article  Google Scholar 

  22. Miyahara, Y., Roy-Gobeil, A. & Grutter, P. Quantum state readout of individual quantum dots by electrostatic force detection. Nanotechnology 28, 064001 (2017).

    Article  Google Scholar 

  23. Bevan, K. H. Electron transfer from the perspective of electron transmission: biased non-adiabatic intermolecular reactions in the single-particle picture. J. Chem. Phys. 146, 134106 (2017).

    Article  Google Scholar 

  24. Jortner, J. Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64, 4860–4867 (1976).

    Article  Google Scholar 

  25. Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  26. Feenstra, R. M. Electrostatic potential for a hyperbolic probe tip near a semiconductor. J. Vac. Sci. Technol. B 21, 2080 (2003).

    Article  Google Scholar 

  27. Kera, S. & Ueno, N. Photoelectron spectroscopy on the charge reorganization energy and small polaron binding energy of molecular film. J. Electron. Spectrosc. Relat. Phenom. 204, 2–11 (2015).

    Article  Google Scholar 

  28. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  Google Scholar 

  29. Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).

    Article  Google Scholar 

  30. Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956 (1998).

    Article  Google Scholar 

  31. Albrecht, T. R., Grutter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991).

    Article  Google Scholar 

  32. Steurer, W., Gross, L. & Meyer, G. Local thickness determination of thin insulator films via localized states. Appl. Phys. Lett. 104, 231606 (2014).

    Article  Google Scholar 

  33. Steurer, W., Fatayer, S., Gross, L. & Meyer, G. Probe-based measurement of lateral single-electron transfer between individual molecules. Nat. Commun. 6, 8353 (2015).

    Article  Google Scholar 

  34. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  35. Scivetti, I. & Persson, M. The electrostatic interaction of an external charged system with a metal surface: a simplified density functional theory approach. J. Phys. Condens. Matter 25, 355006 (2013).

    Article  Google Scholar 

  36. Scivetti, I. & Persson, M. A simplified density functional theory method for investigating charged adsorbates on an ultrathin, insulating film supported by a metal substrate. J. Phys. Condens. Matter 26, 135003 (2014).

    Article  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  38. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  39. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  Google Scholar 

  40. Thonhauser, T. et al. Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112 (2007).

    Article  Google Scholar 

  41. Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).

    Article  Google Scholar 

  42. Repp, J. et al. Charge-state-dependent diffusion of individual gold adatoms on ionic thin NaCl films. Phys. Rev. Lett. 117, 146102 (2016).

    Article  Google Scholar 

  43. Scivetti, I. & Persson, M. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies. J. Phys. Condens. Matter 29, 355002 (2017).

    Article  Google Scholar 

  44. Björk, J. et al. Adsorption of aromatic and anti-aromatic systems on graphene through ππ stacking. J. Phys. Chem. Lett. 1, 3407–3412 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Allenspach for comments. Financial support by the European Research Council (advanced grant ‘CEMAS’, agreement no. 291194, and consolidator grant ‘AMSEL’, agreement no. 682144), EU projects ‘PAMS’ (contract no. 610446) and Initial Training Network ‘ACRITAS’ (contract no. 317348). The Leverhulme Trust (F/00 025/AQ) and the allocations of computer resources at Chadwick, The University of Liverpool, are gratefully acknowledged. I.S. acknowledges CCP5 funding and associated CoSeC support at STFC via EPSRC grant no. EP/M022617/1 and SLA for funding.

Author information

Authors and Affiliations

Authors

Contributions

S.F, W.S., J.R., L.G. and G.M. designed the experiments. S.F., B.S., L.G. and G.M. performed the experiments. S.F. carried out the finite-element simulations. M.P. and I.S. were responsible for the DFT calculations. All the authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Shadi Fatayer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatayer, S., Schuler, B., Steurer, W. et al. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nature Nanotech 13, 376–380 (2018). https://doi.org/10.1038/s41565-018-0087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0087-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing