Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes

Abstract

The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NPs alter the autophagic flux in the upper layers of the BeWo barrier.
Fig. 2: Astrocytes in mixed NPC culture undergo morphological changes after indirect exposure to NPs.
Fig. 3: NPs increase the number of γ-H2AX foci in mixed astrocyte and neuronal cultures.
Fig. 4: Mechanism of NP-induced indirect toxicity is dependent on the presence of astrocytes and is triggered by autophagy in the BeWo barrier.
Fig. 5: GFAP and γ-H2AX levels are increased in the hippocampus of neonates after maternal exposure to CoCr NPs at E12.5.

Similar content being viewed by others

References

  1. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Google Scholar 

  2. Saei, A. A. et al. Nanoparticle surface functionality dictates cellular and systemic toxicity. Chem. Mater. 29, 6578–6595 (2017).

    Article  Google Scholar 

  3. Thubagere, A. & Reinhard, B. M. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. ACS Nano 4, 3611–3622 (2010).

    Article  Google Scholar 

  4. Bhabra, G. et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat. Nanotech. 4, 876–883 (2009).

    Article  Google Scholar 

  5. Sood, A. et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat. Nanotech. 6, 824–833 (2011).

    Article  Google Scholar 

  6. Grandjean, P. & Landrigan, P. J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13, 330–338 (2014).

    Article  Google Scholar 

  7. Shimizu, M. et al. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part. Fibre Toxicol. 6, 20 (2009).

    Article  Google Scholar 

  8. Hougaard, K. S. et al. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part. Fibre Toxicol. 7, 16 (2010).

    Article  Google Scholar 

  9. Mohammadipour, A. et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environ. Toxicol. Pharmacol. 37, 617–625 (2014).

    Article  Google Scholar 

  10. Blum, J. L., Xiong, J. Q., Hoffman, C. & Zelokoff, J. T. Cadium associated with inhaled cadium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol. Sci. 126, 478–486 (2012).

    Article  Google Scholar 

  11. Goeden, N. et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J. Neurosci. 36, 6041–6049 (2016).

    Article  Google Scholar 

  12. Li, H., van Ravenzwaay, B., Rietjens, I. M. & Louisse, J. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Arch. Toxicol. 87, 1661–1669 (2013).

    Article  Google Scholar 

  13. Bode, C. J. et al. In vitro models for studying trophoblast transcellular transport. Methods Mol. Med. 122, 225–239 (2006).

    Google Scholar 

  14. Polyzois, I., Nikolopoulos, D., Michos, I., Patsouris, E. & Theocharis, S. Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty. J. Appl. Toxicol. 32, 255–269 (2012).

    Article  Google Scholar 

  15. Papageorgiou, I. et al. The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 28, 2946–2958 (2007).

    Article  Google Scholar 

  16. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  Google Scholar 

  17. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  Google Scholar 

  18. Ma, X. et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5, 8629–8639 (2011).

    Article  Google Scholar 

  19. Svendsen, C. N. et al. A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141–152 (1998).

    Article  Google Scholar 

  20. Sofroniew, M. V. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20, 160–172 (2014).

    Article  Google Scholar 

  21. Dickey, J. S. et al. Intercellular communication of cellular stress monitored by γ-H2AX induction. Carcinogenesis 30, 1686–1695 (2009).

    Article  Google Scholar 

  22. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  Google Scholar 

  23. Basak, R. & Bandyopadhyay, R. Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29, 4350–4356 (2013).

    Article  Google Scholar 

  24. Chen, Y. et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem. 77, 1601–1610 (2001).

    Article  Google Scholar 

  25. Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    Article  Google Scholar 

  26. Pal, R., Mamidi, M. K., Das, A. K. & Bhonde, R. Human embryonic stem cell proliferation and differentiation as parameters to evaluate developmental toxicity. J. Cell Physiol. 226, 1583–1595 (2011).

    Article  Google Scholar 

  27. Pevny, L. H., Sockanathan, S., Placzek, M. & Lovell-Badge, R. A role for SOX1 in neural determination. Development 125, 1967–1978 (1998).

    Google Scholar 

  28. Dieriks, B., de Vos, W. H., Derradji, H., Baatout, S. & van Oostveldt, P. Medium-mediated DNA repair response after ionizing radiation is correlated with the increase of specific cytokines in human fibroblasts. Mutat. Res. 687, 40–48 (2010).

    Article  Google Scholar 

  29. Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 19, 4651–4659 (2008).

    Article  Google Scholar 

  30. Betin, V. M., Singleton, B. K., Parsons, S. F., Anstee, D. J. & Lane, J. D. Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 9, 881–893 (2013).

    Article  Google Scholar 

  31. Maycotte, P., Jones, K. L., Goodall, M. L., Thorburn, J. & Thorburn, A. Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Mol. Cancer Res. 13, 651–658 (2015).

    Article  Google Scholar 

  32. Narita, M. et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966–970 (2011).

    Article  Google Scholar 

  33. Chen, Z. H. et al. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy 12, 297–311 (2016).

    Article  Google Scholar 

  34. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article  Google Scholar 

  35. Mauer, J., Denson, J. L. & Bruning, J. C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 36, 92–101 (2015).

    Article  Google Scholar 

  36. Campbell, I. L. et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl Acad. Sci. USA 90, 10061–10065 (1993).

    Article  Google Scholar 

  37. Shinozaki, Y. et al. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep. 19, 1151–1164 (2017).

    Article  Google Scholar 

  38. Haroon, F. et al. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J. Immunol. 186, 6521–6531 (2011).

    Article  Google Scholar 

  39. Drogemuller, K. et al. Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis. J. Immunol. 181, 2683–2693 (2008).

    Article  Google Scholar 

  40. Rothaug, M., Becker-Pauly, C. & Rose-John, S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta 1863, 1218–1227 (2016).

    Article  Google Scholar 

  41. Simmons, D. G. et al. Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 135, 2083–2091 (2008).

    Article  Google Scholar 

  42. Hennessy, E., Griffin, E. W. & Cunningham, C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J. Neurosci. 35, 8411–8422 (2015).

    Article  Google Scholar 

  43. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  Google Scholar 

  44. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

    Article  Google Scholar 

  45. Broad, K. D. & Keverne, E. B. Placental protection of the fetal brain during short-term food deprivation. Proc. Natl Acad. Sci. USA 108, 15237–15241 (2011).

    Article  Google Scholar 

  46. Avagliano, L. et al. Autophagy in placentas from acidotic newborns: an immunohistochemical study of LC3 expression. Placenta 34, 1091–1094 (2013).

    Article  Google Scholar 

  47. Stern, S. T., Adiseshaiah, P. P. & Crist, R. M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 9, 20 (2012).

    Article  Google Scholar 

  48. Sun, W. et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339, 197–200 (2013).

    Article  Google Scholar 

  49. Ostenfeld, T. & Svendsen, C. N. Recent advances in stem cell neurobiology. Adv. Tech. Stand. Neurosurg. 28, 3–89 (2003).

    Article  Google Scholar 

  50. Danson, C. M., Pocha, S. M., Bloomberg, G. B. & Cory, G. O. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity. J. Cell Sci. 120, 4144–4154 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

S.J.H. was supported by a fellowship from the Bristol Orthopaedic Trust. Work in the Caldwell lab is supported by Parkinson’s UK, James Tudor Foundation and EPSRC. We thank A. Schwartz (Washington University in St Louis) for permission to use the BeWo b30 cells, G. Cory (University of Exeter) for the modified pSEW sin vector and A. Rosser (Cardiff University) for providing the human fetal tissue for this work. The Cardiff Fetal Tissue Bank is funded by the MRC, NISCHR and Cardiff University. We also thank A. Blom for advice, A. Herman, S. Chappell, the University of Bristol Faculty of Biomedical Sciences Flow Cytometry Facility and I. T. Chang (School of Metallurgy and Materials, University of Birmingham).

Author information

Authors and Affiliations

Authors

Contributions

S.J.H., C.P.C. and M.A.C. conceived and designed the experiments, and C.P.C. and M.A.C. directed the work. S.J.H. completed the experiments with the help of L.A.C., O.C.-L., P.S., N.J.-M., S.F.M., C.E.G. and A.S., and also completed the data analysis with the help of M.A.C. J.D.L. oversaw the autophagy experiments and the lentiviral shRNA experiments, and M.S. provided advice on the BeWo barriers. S.K. performed the in vivo injections and the analysis was completed by A.B., N.T.B. and A.M.M. S.J.H., C.P.C. and M.A.C. wrote the paper and all the authors commented on it and agreed the final version.

Corresponding author

Correspondence to Maeve A. Caldwell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–22, Supplementary methods, Supplementary Tables 1–3, Supplementary references.

Life Sciences Reporting Summary

Flow Cytometry Checklist

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawkins, S.J., Crompton, L.A., Sood, A. et al. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. Nature Nanotech 13, 427–433 (2018). https://doi.org/10.1038/s41565-018-0085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0085-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing