Quantum engineering of transistors based on 2D materials heterostructures

Abstract

Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Seven proposed transistor structures based on 2D heterostructures.
Fig. 3: Consensus on the transistor device structure to be used in CMOS chips versus year of first shipment.
Fig. 4

Change history

  • 22 May 2018

    In the version of this Perspective originally published, in the email address for the author Giuseppe Iannaccone, the surname was incorrectly given as “innaconne”; this has now been corrected in all versions of the Perspective. Also, an error in the production process led to Figs. 1, 2 and 3 being of low resolution; these have now been replaced with higher-quality versions.

References

  1. 1.

    Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).

  2. 2.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  3. 3.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  4. 4.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014).

  5. 5.

    Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

  6. 6.

    Yablonovitch, E. & Kane, E. O. Band structure engineering of semiconductor lasers for optical communications. J. Light. Technol. 6, 1292–1299 (1987).

  7. 7.

    Harame, D. L. et al. Si/SiGe Epitaxial-base transistors. 1. Materials and Circuits. IEEE Trans. Electron Devices 42, 455–468 (1995).

  8. 8.

    Heiblum, M., Nathan, M. I., Thomas, D. C. & Knoedler, C. M. Direct observation of ballistic transport in GaAs. Phys. Rev. Lett. 55, 2200–2203 (1985).

  9. 9.

    Capasso, F., Sen, S., Gossard, A. C., Hutchinson, A. L. & English, J. H. Quantum well resonant tunneling bipolar transistor operating at room temperature. IEEE Electron Device Lett. 7, 573–575 (1986).

  10. 10.

    Yokoyama, N. et al. A new functional, resonant-tunneling hot-electron transistor (RHET). Jap. J. Appl. Phys. 24, L853–L854 (1985).

  11. 11.

    Capasso, F., Tsang, W. T., Bethea, C. G., Hutchinson, A. L. & Levine, B. F. New graded band‐gap picosecond phototransistor. Appl. Phys. Lett. 42, 93–95 (1983).

  12. 12.

    Kuhn, K. J. et al. The ultimate CMOS device and beyond. In IEDM Tech. Dig. 8.1.1–8.1.4. (IEEE, 2012).

  13. 13.

    Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010).

  14. 14.

    Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

  15. 15.

    Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotech. 8, 119–124 (2013).

  16. 16.

    Han, G. H. et al. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7, 10129–10138 (2013).

  17. 17.

    Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012).

  18. 18.

    Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotech. 9, 391–396 (2014).

  19. 19.

    Fang, S. & Kaxiras, E. Electronic structure theory of weakly interacting bilayers. Phys. Rev. B 93, 235153 (2016).

  20. 20.

    Carr, S. et al. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

  21. 21.

    Burg, G. et al. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene–WSe2 Heterostructures. Nano Lett. 17, 3919–3925 (2017).

  22. 22.

    Britnell, L. et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 335, 947–950 (2012).

  23. 23.

    Yang, H. et al. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science 336, 1140–1143 (2012).

  24. 24.

    Fiori, G., Bruzzone, S. & Iannaccone, G. Very Large Current Modulation in Vertical Heterostructure Graphene / h-BN Transistors. IEEE Trans. Electron Devices 60, 268–273 (2013).

  25. 25.

    Mehr, W. et al. Vertical graphene base transistor. IEEE Electron Device Lett. 33, 691–693 (2012).

  26. 26.

    Vaziri, S. et al. A graphene-based hot electron transistor. Nano Lett. 13, 1435–1439 (2013).

  27. 27.

    Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8, 100–103 (2013).

  28. 28.

    Deng, Y. et al. Black Phosphorus–Monolayer MoS2 van der Waals Heterojunction p–n Diode. ACS Nano 8, 8292–8299 (2014).

  29. 29.

    Fiori, G., Betti, A., Bruzzone, S., D’Amico, P. & Iannaccone, G. Nanodevices in Flatland: Two-dimensional graphene-based transistors with high Ion/Ioff ratio. In IEDM Tech. Dig. 11.4.1–11.4.4 (IEEE, 2011).

  30. 30.

    Iannaccone, G. & Fiori, G. Field-effect transistor with two-dimensional channel realized with lateral heterostructures based on hybridized graphene. US patent 9,620,634 (2017).

  31. 31.

    Fiori, G., Betti, A., Bruzzone, S. & Iannaccone, G. Lateral Graphene-hBCN Heterostructures as a Platform for Fully Two-Dimensional Transistors. ACS Nano 6, 2642–2648 (2012).

  32. 32.

    Moon, J. S. et al. Lateral graphene heterostructure field-effect transistor. IEEE Electron Device Lett. 34, 1190–1192 (2013).

  33. 33.

    Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

  34. 34.

    Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

  35. 35.

    Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, Y. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Lett. 14, 4785–4791 (2014).

  36. 36.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

  37. 37.

    Britnell, L. et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311–1314 (2014).

  38. 38.

    Nikonov, D. E. & Young, I. A. Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking. Proc. IEEE 101, 2498–2533 (2013).

  39. 39.

    Nikonov, D. E. & Young, I. A. Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).

  40. 40.

    International Technology Roadmap for Semiconductors 2.0–2015 Edition (ITRS, accessed 14 February 2018); http://www.itrs2.net.

  41. 41.

    International Roadmap for Devices and Systems 2016 Edition (IEEE, accessed 14 February 2018); https://irds.ieee.org/images/files/pdf/2016_MM.pdf

  42. 42.

    Hisamoto, D. et al. A folded‐channel MOSFET for deep‐sub‐tenth micron era. In IEDM Tech. Dig. 1032–1034 (IEEE, 1998)..

  43. 43.

    Narasimha, S. et al. A 7nm CMOS Technology Platform for Mobile and High Performance Compute Applications. In IEDM Tech. Dig. 689–692 (IEEE, 2017).

  44. 44.

    Moroz, V., Huang, J. & Choi, M. FinFET/nanowire design for 5nm/3nm technology nodes: Channel cladding and introducing a “bottleneck” shape to remove performance bottleneck. In EDTM 67–69 (IEEE, 2017).

  45. 45.

    Li, E. H. & Weiss, B. L. Bandgap engineering and quantum wells in optoelectronic devices. Electronics and Communication Eng. J. 3, 63–79 (1991).

  46. 46.

    Harbison, J. P. et al. MBE growth of AlGaAs/NiAl/AlGaAs heterostructures – a novel epitaxial III-V semiconductor metal system. J. Crystal Growth 95, 425–426 (1989).

  47. 47.

    Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Materials Today 15, 564–589 (2012).

  48. 48.

    Ismach, A. et al. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Materials 4, 025117 (2017).

  49. 49.

    Sonde, S. et al. Ultrathin, wafer-scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism. 2D Materials 4, 025052 (2017).

  50. 50.

    Lv, R. et al. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res. 48, 56–64 (2015).

  51. 51.

    Nie, Y. F. et al. First principles kinetic Monte Carlo study on the growth patterns of WSe2 monolayer. 2D Materials 3, 025029 (2016).

  52. 52.

    Yue, R. et al. Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides. 2D Materials 4, 045019 (2017).

  53. 53.

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

  54. 54.

    Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 9, 4268–4272 (2009).

  55. 55.

    Yu, Q. K. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

  56. 56.

    Hao, Y. F. et al. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 342, 720–723 (2013).

  57. 57.

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

  58. 58.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

  59. 59.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  60. 60.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

  61. 61.

    Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, 1500222 (2015).

  62. 62.

    Banszerus, L. et al. Ballistic Transport Exceeding 28 mu m in CVD Grown Graphene. Nano Lett. 16, 1387–1391 (2016).

  63. 63.

    Nie, Y. et al. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides. Sci. Rep. 7, 2977 (2017).

  64. 64.

    Yu, Q. K. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

  65. 65.

    Miseikis, V. et al. Deterministic patterned growth of high-mobility large-crystal graphene: a path towards wafer scale integration. 2D Materials 4, 021004 (2017).

  66. 66.

    Mcmanus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotech. 12, 343–350 (2017).

  67. 67.

    Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

  68. 68.

    Torrisi, F. et al. Inkjet-Printed Graphene Electronics. ACS Nano 6, 2992–3006 (2012).

  69. 69.

    Bonaccorso, F., Bartolotta, A., Coleman, J. N. & Backes, C. Adv. Mater. 28, 6136–6166 (2016).

  70. 70.

    Marian, D. et al. Transistor Concepts Based on Lateral Heterostructures of Metallic and Semiconducting Phases of MoS2. Phys. Rev. Appl. 8, 054047 (2017).

  71. 71.

    Roy, T. et al. Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors. ACS Nano 9, 2071–2079 (2015).

  72. 72.

    Lu, S.-C., Mohamed, M. & Zhu, W. Novel vertical hetero- and homo-junction tunnel field-effect transistors based on multi-layer 2D crystals. 2D Materials 3, 011010 (2016).

  73. 73.

    Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S.-I. Electron Transport Properties of Ultrathin-body and Tri-gate SOI nMOSFETs with Biaxial and Uniaxial Strain. In IEDM Tech. Dig. 457–460 (IEEE, 2006)..

  74. 74.

    Uchida, K., Watanabe, H., Koga, J., Kinoshita, A. & Takagi, S. Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI MOSFETs. In IEDM Tech. Dig. 47–50 (IEEE, 2002).

  75. 75.

    Xiao, Y., Kang, J., Takenaka, M. & Takagi, S. Experimental Study on Carrier Transport Properties in Extremely-Thin Body Ge-on-Insulator (GOI) p-MOSFETs with GOI Thickness down to 2 nm. In IEDM Tech. Dig. 2.2.1–2.2.4 (IEEE, 2015).

  76. 76.

    Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

  77. 77.

    Kim, S. et al. Experimental study on electron mobility in InxGa1−xAs-on-insulator metal–oxide–semiconductor field-effect transistors with In content modulation and MOS interface buffer engineering. IEEE Trans. Nanotech. 12, 621–628 (2013).

  78. 78.

    Kim, D. et al. The enhanced low resistance contacts and boosted mobility in two-dimensional p-type WSe2 transistors through Ar+ ion-beam generated surface defects. AIP Advances 6, 105307 (2016).

  79. 79.

    Fang, H. et al. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 12, 3788–3792 (2016).

  80. 80.

    Liu, B. et al. High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-GaAs Plane Heterojunctions. ACS Nano 10, 5153–5160 (2016).

  81. 81.

    Cui, Y. et al. High-Performance Monolayer WS2 Field-Effect Transistors on High-κDielectrics. Adv. Mat. 27, 5230–5234 (2015).

  82. 82.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

  83. 83.

    Engel, M., Farmer, D. B., Han, S. & Wong, H. S. P. High-Performance p Type Black Phosphorus Transistor with Scandium Contact. ACS Nano 10, 4672–4677 (2016).

  84. 84.

    Lembke, D., Allain, A. & Kis, A. Thickness-dependent mobility in two-dimensional MoS2 transistors. Nanoscale 7, 6255–6260 (2015).

  85. 85.

    Yu, Z. et al. Realization of Room-Temperature Phonon-Limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening. Adv. Mater. 28, 547–552 (2016).

  86. 86.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

  87. 87.

    English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. Nano Lett. 16, 3824–3830 (2016).

  88. 88.

    English, C. D., Smithe, K. K. H., Xu, R. L. & Pop, E. Approaching Ballistic Transport in Monolayer MoS2 Transistors with Self-Aligned 10 nm Top Gates. In IEDM Tech. Dig. 5.6.1–5.6.4 (IEEE, 2016).

  89. 89.

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

  90. 90.

    Xia, F., Perebeinos, V., Lin, Y., Wu, Y. & Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotech. 6, 179–184 (2011).

  91. 91.

    Logoteta, D., Fiori, G. & Iannaccone, G. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices. Sci. Rep. 4, 6607 (2014).

  92. 92.

    Mostofi, A. A. et al. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

  93. 93.

    Bruzzone, S., Iannaccone, G., Marzari, N. & Fiori, G. An Open-Source Multiscale Framework for the Simulation of Nanoscale Devices. IEEE Trans. Electron Devices 61, 48–53 (2014).

  94. 94.

    Fiori, G. & Iannaccone, G. Multiscale Modeling for Graphene-Based Nanoscale Transistors. Proc. IEEE 101, 1653–1669 (2013).

Download references

Acknowledgements

We acknowledge financial support from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 696656—GrapheneCore1, and a Newton International Fellowship.

Author information

Correspondence to Giuseppe Iannaccone or Francesco Bonaccorso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iannaccone, G., Bonaccorso, F., Colombo, L. et al. Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotech 13, 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6

Download citation

Further reading