Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge splitters and charge transport junctions based on guanine quadruplexes


Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structures and conductance measurements for G4+3 constructs.
Fig. 2: Measured conductance, molecular dynamics simulations and electronic coupling strength calculations for antiparallel and parallel G4+3 junctions.
Fig. 3: Structures, conductance, molecular dynamics simulations, and electronic coupling strength calculations for antiparallel and parallel G4+4 constructs.


  1. 1.

    Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  2. 2.

    Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  Google Scholar 

  3. 3.

    Genereux, J. C. & Barton, J. K. Mechanisms for DNA charge transport. Chem. Rev. 110, 1642–1662 (2010).

    Article  Google Scholar 

  4. 4.

    Huang, Y. C., Cheng, A. K. H., Yu, H.-Z. & Sen, D. Charge conduction properties of a parallel-stranded DNA G-quadruplex: implications for chromosomal oxidative damage. Biochemistry 48, 6794–6804 (2009).

    Article  Google Scholar 

  5. 5.

    Livshits, G. I. et al. Long-range charge transport in single G-quadruplex DNA molecules. Nat. Nanotech. 9, 1040–1046 (2014).

    Article  Google Scholar 

  6. 6.

    Xiang, L. et al. Intermediate tunnelling–hopping regime in DNA charge transport. Nat. Chem. 7, 221–226 (2015).

    Article  Google Scholar 

  7. 7.

    Huang, Y. C. & Sen, D. A twisting electronic nanoswitch made of DNA. Angew. Chem. Int. Ed. 53, 14055–14059 (2014).

    Article  Google Scholar 

  8. 8.

    Odom, D. T., Dill, E. A. & Barton, J. K. Robust charge transport in DNA double crossover assemblies. Chem. & Biol. 7, 475–481 (2000).

    Article  Google Scholar 

  9. 9.

    Odom, D. T., Dill, E. A. & Barton, J. K. Charge transport through DNA four-way junctions. Nucl Acids Res. 29, 2026–2033 (2001).

    Article  Google Scholar 

  10. 10.

    Young, R. M. et al. Charge transport across DNA-based three-way junctions. J. Am. Chem. Soc. 137, 5113–5122 (2015).

    Article  Google Scholar 

  11. 11.

    Liu, B., Leontis, N. B. & Seeman, N. C. Bulged 3-arm DNA branched junctions as components for nanoconstruction. Nanobiology 3, 177–188 (1994).

    Google Scholar 

  12. 12.

    Zhang, Y. et al. Conformationally gated charge transfer in DNA three-way junctions. J. Phys. Chem. Lett. 6, 2434–2438 (2015).

    Article  Google Scholar 

  13. 13.

    Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).

    Article  Google Scholar 

  14. 14.

    Venczel, E. A. & Sen, D. Synapsable DNA. J. Mol. Biol. 257, 219–224 (1996).

    Article  Google Scholar 

  15. 15.

    Venkatramani, R., Wierzbinski, E., Waldeck, D. H. & Beratan, D. N. Breaking the simple proportionality between molecular conductances and charge transfer rates. Farad. Discuss. 174, 57–78 (2014).

    Article  Google Scholar 

  16. 16.

    Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  Google Scholar 

  17. 17.

    Fahlman, R. P. & Sen, D. Cation-regulated self-association of ‘synapsable’ DNA duplexes. J. Mol. Biol. 280, 237–244 (1998).

    Article  Google Scholar 

  18. 18.

    Woiczikowski, P. B., Kubař, T., Gutiérrez, R., Cuniberti, G. & Elstner, M. Structural stability versus conformational sampling in biomolecular systems: Why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA? J. Chem. Phys. 133, 035103 (2010).

    Article  Google Scholar 

  19. 19.

    Giese, B. Long-distance charge transport in DNA: the hopping mechanism. Acc. Chem. Res. 33, 631–636 (2000).

    Article  Google Scholar 

  20. 20.

    Jortner, J., Bixon, M., Langenbacher, T. & Michel-Beyerle, M. E. Charge transfer and transport in DNA. Proc. Natl Acad. Sci. USA 95, 12759–12765 (1998).

    Article  Google Scholar 

  21. 21.

    Sugiyama, H. & Saito, I. Theoretical studies of GG-specific photocleavage of DNA via electron transfer: significant lowering of ionization potential and 5′-localization of HOMO of stacked GG bases in B-Form DNA. J. Am. Chem. Soc. 118, 7063–7068 (1996).

    Article  Google Scholar 

  22. 22.

    Berlin, Y. A., Burin, A. L. & Ratner, M. A. On the long-range charge transfer in DNA. J. Phys. Chem. A 104, 443–445 (2000).

    Article  Google Scholar 

  23. 23.

    Hush, N. S. & Cheung, A. S. Ionization potentials and donor properties of nucleic acid bases and related compounds. Chem. Phys. Lett. 34, 11–13 (1975).

    Article  Google Scholar 

  24. 24.

    Lewis, F. D., Letsinger, R. L. & Wasielewski, M. R. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc. Chem. Res. 34, 159–170 (2000).

    Article  Google Scholar 

  25. 25.

    Giese, B., Amaudrut, J., Kohler, A.-K., Spormann, M. & Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling. Nature 412, 318–320 (2001).

    Article  Google Scholar 

  26. 26.

    Kawai, K. & Majima, T. Hole transfer kinetics of DNA. Acc. Chem. Res. 46, 2616–2625 (2013).

    Article  Google Scholar 

  27. 27.

    Liu, C. et al. Engineering nanometre-scale coherence in soft matter. Nat. Chem. 8, 941–945 (2016).

    Article  Google Scholar 

  28. 28.

    Lech, C. J., Phan, A. T., Michel-Beyerle, M.-E. & Voityuk, A. A. Electron-hole transfer in G-quadruplexes with different tetrad stacking geometries: a combined QM and MD Study. J. Phys. Chem. B 117, 9851–9856 (2013).

    Article  Google Scholar 

  29. 29.

    Lech, C. J., Phan, A. T., Michel-Beyerle, M.-E. & Voityuk, A. A. Influence of base stacking geometry on the nature of excited states in G-quadruplexes: a time-dependent DFT Study. J. Phys. Chem. B 119, 3697–3705 (2015).

    Article  Google Scholar 

  30. 30.

    Changenet-Barret, P., Hua, Y. & Markovitsi, D. Electronic excitations in guanine quadruplexes. Top. Curr. Chem. 356, 183–201 (2014).

    Article  Google Scholar 

  31. 31.

    Voityuk, A. A., Rösch, N., Bixon, M. & Jortner, J. Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B 104, 9740–9745 (2000).

    Article  Google Scholar 

  32. 32.

    Nitzan, A. Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems (Oxford University Press, Oxford, 2006).

  33. 33.

    Blumberger, J. Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115, 11191–11238 (2015).

    Article  Google Scholar 

  34. 34.

    Zhang, Y. et al. DNA charge transport: moving beyond 1D. Surf. Sci. 652, 33–38 (2016).

    Article  Google Scholar 

  35. 35.

    Balaeff, A., Craig, S. L. & Beratan, D. N. B-DNA to Zip-DNA: Simulating a DNA transition to a novel structure with enhanced charge-transport characteristics. J. Phys. Chem. A 115, 9377–9391 (2011).

    Article  Google Scholar 

  36. 36.

    Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

    Article  Google Scholar 

  37. 37.

    Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    Article  Google Scholar 

  38. 38.

    Xu, B., Zhang, P., Li, X. & Tao, N. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 4, 1105–1108 (2004).

    Article  Google Scholar 

  39. 39.

    Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).

    Article  Google Scholar 

  40. 40.

    Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  Google Scholar 

  41. 41.

    Sen, S. & Nilsson, L. MD simulations of homomorphous PNA, DNA, and RNA single strands: characterization and comparison of conformations and dynamics. J. Am. Chem. Soc. 123, 7414–7422 (2001).

    Article  Google Scholar 

  42. 42.

    Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phy. Chem. 54, 57–87 (2003).

    Article  Google Scholar 

  43. 43.

    Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2009).

Download references


We thank the Office of Naval Research (N00014-11-1-0729) for support.

Author information




R.S. and N.C.S. designed and synthesized the DNA molecules. L.X., Y.L. and N.T. designed and conducted the conductance measurements experiments. C.L., A.B., Y.Z., P.Z. and D.N.B. conducted and analysed the simulations. The three teams collaborated intensively in formulating the key molecular designs, analysing the data and writing the manuscript.

Corresponding authors

Correspondence to David N. Beratan or Nongjian Tao or Nadrian C. Seeman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 1–2, Supplementary Notes 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sha, R., Xiang, L., Liu, C. et al. Charge splitters and charge transport junctions based on guanine quadruplexes. Nature Nanotech 13, 316–321 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research