Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes


Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3–20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the membrane.
Fig. 2: Freshwater transport through the C-D35-2 membrane.
Fig. 3: Energy accounting experiment.
Fig. 4: Desalination mechanism.
Fig. 5: Predicted heat and mass transport by theoretical modelling and MD simulations in the carbon composite membrane.


  1. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology and the environment. Science 333, 712–717 (2011).

    Article  Google Scholar 

  2. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–309 (2008).

    Article  Google Scholar 

  3. Cipollina, A. et al. (eds) Seawater Desalination (Springer, Heidelberg, 2009).

  4. Ghaffour, N., Missimer, T. M. & Amy, G. L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 309, 197–207 (2013).

    Article  Google Scholar 

  5. El-Ghonemy, A. M. K. Water desalination systems powered by renewable energy sources: Review. Renew. Sust. Energy Rev. 16, 1537–1556 (2012).

    Article  Google Scholar 

  6. Kumar, M., Habel, J. E. O., Shen, Y. X., Meier, W. P. & Walz, T. High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes. J. Am. Chem. Soc. 134, 18631–18637 (2012).

    Article  Google Scholar 

  7. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  Google Scholar 

  8. Theresa, M., Pendergast, M. & Hoek, M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011).

    Article  Google Scholar 

  9. Verweij, H., Schillo, M. C. & Li, J. Fast mass transport through carbon nanotube membranes. Small 3, 1996–2004 (2007).

    Article  Google Scholar 

  10. Song, C. & Corry, B. Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B 113, 7642–7649 (2009).

    Article  Google Scholar 

  11. Corry, B. Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011).

    Article  Google Scholar 

  12. Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R. & Ajayan, P. M. Carbon nanotube filters. Nat. Mater. 3, 610–614 (2004).

    Article  Google Scholar 

  13. Tofighy, M. A., Shirazi, Y., Mohammadi, R. & Park, A. Salty water desalination using carbon nanotubes membrane. Chem. Eng. J. 168, 1064–1072 (2011).

    Article  Google Scholar 

  14. Majumder, M. & Ajayan, P. M. in Comprehensive Membrane Science and Engineering (eds E. Drioli & L. Giorno) 291–310 (Elsevier, UK, 2010).

  15. Mi, W. L., Lin, Y. S. & Li, Y. D. Vertically aligned carbon nanotube membranes on macroporous alumina supports. J. Membr. Sci. 304, 1–7 (2007).

    Article  Google Scholar 

  16. Kim, S., Jinschek, J. R., Chen, H., Sholl, D. S. & Marand, E. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett. 7, 2806–2811 (2007).

    Article  Google Scholar 

  17. Zhong, Y. J. et al. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water. Environ. Sci. Technol. 50, 1039–1045 (2016).

  18. Ratto, T. V., Holt, J. K. & Szmodis A. W. Membranes with embedded nanotubes for selective permeability. US patent 7,993,524 (2011).

  19. Lee, H. D., Kim, H. W., Cho, Y. H. & Park, H. B. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes. Small 10, 2653–2660 (2014).

    Article  Google Scholar 

  20. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  Google Scholar 

  21. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  Google Scholar 

  22. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  Google Scholar 

  23. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotech. 12, 546–551 (2017).

  24. Yasuda, H. & Tsai, J. T. Pore size of microporous polymer membranes. J. Appl. Polym. Sci. 18, 805–819 (1974).

    Article  Google Scholar 

  25. Wang, P., Teoh, M. M. & Chung, T. S. Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. Water Res. 45, 5489–5500 (2011).

    Article  Google Scholar 

  26. Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    Article  Google Scholar 

  27. Schaep, J., Vandecasteele, C., Mohammad, A. W. & Bowen, W. R. Modelling the retention of ionic components for different nanofiltration membranes. Sep. Purif. Technol. 22–23, 169–179 (2001).

    Article  Google Scholar 

  28. Peeters, J. M. M., Boom, J. P., Mulder, M. H. V. & Srathmann, H. Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145, 199–209 (1998).

    Article  Google Scholar 

  29. Chekli, L. et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects. J. Membr. Sci. 497, 430–449 (2016).

    Article  Google Scholar 

  30. Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & Mcgrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011).

    Article  Google Scholar 

  31. Dang, L. X., Rice, J. E., Caldwell, J. & Kollman, P. A. Ion solvation in polarizable water: molecular dynamics simulations. J. Am. Chem. Soc. 113, 2481–2486 (1991).

    Article  Google Scholar 

  32. Mancinelli, R., Botti, A., Bruni, F., Ricci, M. A. & Soper, A. K. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111, 13570–13577 (2007).

    Article  Google Scholar 

  33. Taherian, F., Marcon, V., van der Vegt, N. F. A. & Leroy, F. What is the contact angle of water on graphene? Langmuir 29, 1457–1465 (2013).

    Article  Google Scholar 

  34. Kimmel, G. A. et al. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131, 12838–12844 (2009).

    Article  Google Scholar 

  35. Lee, J. & Karnik, R. Desalination of water by vapor-phase transport through hydrophobic nanopores. J. Appl. Phys. 108, 044315 (2010).

    Article  Google Scholar 

  36. Skoulidas, A. I., Ackerman, D. M., Johnson, J. K. & Sholl, D. S. Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002).

    Article  Google Scholar 

  37. Arya, G., Chang, H.-C. & Maginn, E. Knudsen diffusivity of a hard sphere in a rough slit pore. Phys. Rev. Lett. 91, 026102 (2003).

  38. Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    Article  Google Scholar 

  39. Liu, S. M., Li, K. & Hughes, R. Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceram. Int. 29, 875–881 (2003).

    Article  Google Scholar 

  40. Wang, B. & Lai, Z. P. Finger-like voids induced by viscous fingering during phase-inversion of alumina/PES/NMP suspensions. J. Membr. Sci. 405–406, 275–283 (2012).

    Google Scholar 

  41. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comp. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  42. Weerasinghe, S. & Smith, P. E. A Kirkwood–Buff derived force field for sodium chloride in water. J. Chem. Phys. 119, 11342–11349 (2003).

    Article  Google Scholar 

  43. Werder, T., Walther, J. H., Jaffe, R., Halicioglu, T. & Koumoutsakos, P. On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003).

    Article  Google Scholar 

  44. Oostenbrink, C., Villa, A., Mark, A. E. & van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6. J. Comp. Chem. 25, 1656–1676 (2004).

    Article  Google Scholar 

  45. Ryckaert, J. P., Ciccotti, G. & Berendsen, H. J. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 23, 327–341 (1977).

    Article  Google Scholar 

  46. Berendsen, H. J., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  Google Scholar 

  47. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  Google Scholar 

  48. Vanegas, J. M., Torres-Sánchez, A. & Arroyo, M. Importance of force decomposition for local stress calculations in biomembrane molecularsimulations. J. Chem. Theory Comput. 10, 691–702 (2014).

    Article  Google Scholar 

Download references


Commercial PTFE membranes and FO membranes were provided by N. Ghaffour and T. Zhang from the KAUST Water Desalination and Reuse Center. Z.L. acknowledges support from KAUST (grant URF/1/1723) and KACST (grant RGC/3/1614). P.S. acknowledges support from KAUST (Special Partnerships Award number UK-C0016 and grant SA-C0040), HKUST (grant SRFI 11/SC02) and the William Mong Institute of Nanoscience and Technology (grant G5537-E).

Author information

Authors and Affiliations



Z.L. and W.C. conceived the initial ideas and experimental design. S.C., T.L. and P.S. contributed to the desalination mechanism and the relevant simulations and data analyses. W.C., Q.Z., Z.F. and H.Y. carried out the experiments, and T.L. and S.C. carried out the MD simulations. K.-W.H. contributed to data analyses, and X.Z. contributed to characterization and data analyses. Z.L., W.C. and P.S. wrote the first draft, and Z.L., W.C., P.S., S.C., T.L. and X.Z. participated in the revisions.

Corresponding authors

Correspondence to Zhiping Lai or Ping Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherʼs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–15 and Supplementary Tables 1–9.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Chen, S., Liang, T. et al. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotech 13, 345–350 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research