A broadband achromatic metalens in the visible


Metalenses consist of an array of optical nanoantennas on a surface capable of manipulating the properties of an incoming light wavefront. Various flat optical components, such as polarizers, optical imaging encoders, tunable phase modulators and a retroreflector, have been demonstrated using a metalens design. An open issue, especially problematic for colour imaging and display applications, is the correction of chromatic aberration, an intrinsic effect originating from the specific resonance and limited working bandwidth of each nanoantenna. As a result, no metalens has demonstrated full-colour imaging in the visible wavelength. Here, we show a design and fabrication that consists of GaN-based integrated-resonant unit elements to achieve an achromatic metalens operating in the entire visible region in transmission mode. The focal length of our metalenses remains unchanged as the incident wavelength is varied from 400 to 660 nm, demonstrating complete elimination of chromatic aberration at about 49% bandwidth of the central working wavelength. The average efficiency of a metalens with a numerical aperture of 0.106 is about 40% over the whole visible spectrum. We also show some examples of full-colour imaging based on this design.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: IRUEs for a broadband achromatic metalens in the visible light region.
Fig. 2: Experimental verification of achromatic metalenses.
Fig. 3: Performance of broadband achromatic metalens.
Fig. 4: Imaging using a visible achromatic metalens with NA = 0.106.


  1. 1.

    Luo, X. G. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015).

  2. 2.

    Pu, M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015).

  3. 3.

    Hsiao, H.-H., Chu, C. H. & Tsai, D. P. Fundamentals and applications of metasurfaces. Small Methods 1, 1600064 (2017).

  4. 4.

    Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

  5. 5.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  6. 6.

    Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett. 17, 445–452 (2017).

  7. 7.

    Li, L. et al. Plasmonic polarization generator in well-routed beaming. Light. Sci. Appl. 4, e330 (2015).

  8. 8.

    Wu, P. C. et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv. Opt. Mater. 5, 1600938 (2017).

  9. 9.

    Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016).

  10. 10.

    Huang, L. et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater. 27, 6444–6449 (2015).

  11. 11.

    Huang, Y.-W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

  12. 12.

    Wu, P. C., Papasimakis, N. & Tsai, D. P. Self-affine graphene metasurfaces for tunable broadband absorption. Phy. Rev. Appl. 6, 044019 (2016).

  13. 13.

    Sherrott, M. C. et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017).

  14. 14.

    Thyagarajan, K., Sokhoyan, R., Zornberg, L. & Atwater, H. A. Metasurfaces: millivolt modulation of plasmonic metasurface optical response via ionic conductance. Adv. Mater. 29, 1701044 (2017).

  15. 15.

    Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

  16. 16.

    Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).

  17. 17.

    Luo, X. & Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004).

  18. 18.

    Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345–6352 (2017).

  19. 19.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech. 10, 937–943 (2015).

  20. 20.

    Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

  21. 21.

    Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

  22. 22.

    Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

  23. 23.

    Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017).

  24. 24.

    Hu, J., Liu, C.-H., Ren, X., Lauhon, L. J. & Odom, T. W. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano 10, 10275–10282 (2016).

  25. 25.

    Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017).

  26. 26.

    Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).

  27. 27.

    Wang, S. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017).

  28. 28.

    Khorasaninejad, M. et al. Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595–4600 (2016).

  29. 29.

    Khorasaninejad, M., Ambrosio, A., Kanhaiya, P. & Capasso, F. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016).

  30. 30.

    Hentschel, M., Weiss, T., Bagheri, S. & Giessen, H. Babinet to the half: coupling of solid and inverse plasmonic structures. Nano Lett. 13, 4428–4433 (2013).

  31. 31.

    Wen, D. et al. Metasurface device with helicity-dependent functionality. Adv. Opt. Mater. 4, 321–327 (2016).

  32. 32.

    Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotech. 10, 308–312 (2015).

  33. 33.

    Kamali, S. M., Arbabi, A., Arbabi, E., Horie, Y. & Faraon, A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016).

  34. 34.

    Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

  35. 35.

    Wang, P., Mohammad, N. & Menon, R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016).

  36. 36.

    Li, Y. et al. Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016).

  37. 37.

    Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).

  38. 38.

    Goldys, E. M. et al. Analysis of the red optical emission in cubic GaN grown by molecular-beam epitaxy. Phys. Rev. B 60, 5464–5469 (1999).

  39. 39.

    Ng, R. et al. Light Field Photography with a Hand-Held Plenoptic Camera Stanford University Computer Science Tech Report CSTR 2005-02 (Stanford Univ., 2005).

Download references


The authors acknowledge financial support from The National Key R&D Program of China (2017YFA0303700, 2016YFA0202103), National Natural Science Foundation of China (no. 11674167, 11621091, 11774164, 11322439), Ministry of Science and Technology, Taiwan (grant no. MOST-106-2745-M-002-003-ASP) and Academia Sinica (grant no. AS-103-TP-A06). T.L. thanks the support from Dengfeng Project B of Nanjing University. The authors are also grateful to the National Center for Theoretical Sciences, NEMS Research Center of National Taiwan University, National Center for High-Performance Computing, Taiwan, and Research Center for Applied Sciences, Academia Sinica, Taiwan for their support.

Author information




S.W. and P.C.W. developed the theoretical aspects, performed the numerical design, optical measurement and data analysis, and wrote the manuscript. V.-C.S. performed the sample preparation. Y.-C.L., M.-K.C. and H.Y.K. built up the optical system for measurement. B.H.C., Y.H.C. and T.-T.H. performed the numerical simulation and data analysis. J.-H.W., R.-M.L. and C.-H.K. provided GaN film and performed the sample preparation. T.L., Z.W. and S.Z. organized the project, designed experiments, analysed the results and prepared the manuscripts. D.P.T. organized the project, designed and developed the theoretical model, numerical design and optical measurement, analysed the results and prepared the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Din Ping Tsai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9 and Supplementary Tables 1–2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wu, P.C., Su, V. et al. A broadband achromatic metalens in the visible. Nature Nanotech 13, 227–232 (2018). https://doi.org/10.1038/s41565-017-0052-4

Download citation

Further reading