Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Manipulation of domain-wall solitons in bi- and trilayer graphene

Abstract

Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1,2,3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4,5,6,7,8,9,10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nano-imaging and manipulating DWs in bilayer and trilayer graphene.
Fig. 2: Versatile manipulation of DW solitons in bilayer and trilayer graphene.
Fig. 3: Angle-dependent investigation of DW motions in trilayer graphene.
Fig. 4: Schematics of the anisotropic DW motions in trilayer graphene.

Similar content being viewed by others

References

  1. Zou, X. & Yakobson, B. I. An open canvas—2D materials with defects, disorder, and functionality. Acc. Chem. Res. 48, 73–80 (2015).

    Article  Google Scholar 

  2. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  Google Scholar 

  3. Dimiduk, D. M., Uchic, M. D. & Parthasarathy, T. A. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065–4077 (2005).

    Article  Google Scholar 

  4. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  Google Scholar 

  5. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    Article  Google Scholar 

  6. Martin, I., Blanter, Y. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article  Google Scholar 

  7. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  Google Scholar 

  8. Vaezi, A., Liang, Y., Ngai, D. H., Yang, L. & Kim, E.-A. Topological edge states at a tilt boundary in gated multilayer graphene. Phys. Rev. X 3, 021018 (2013).

    Google Scholar 

  9. Semenoff, G. W., Semenoff, V. & Zhou, F. Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008).

    Article  Google Scholar 

  10. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  Google Scholar 

  11. Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    Article  Google Scholar 

  12. Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    Article  Google Scholar 

  13. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  Google Scholar 

  14. Koshino, M. Electronic transmission through AB–BA domain boundary in bilayer graphene. Phys. Rev. B 88, 115409 (2013).

    Article  Google Scholar 

  15. Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    Article  Google Scholar 

  16. Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E. & Heinz, T. F. Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944–947 (2011).

    Article  Google Scholar 

  17. Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotech. 4, 383–388 (2009).

    Article  Google Scholar 

  18. Guinea, F., Castro Neto, A. H. & Peres, N. M. R. Electronic states and landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  Google Scholar 

  19. Koshino, M. & McCann, E. Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene. Phys. Rev. B 79, 125443 (2009).

    Article  Google Scholar 

  20. Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).

    Article  Google Scholar 

  21. Zou, K., Zhang, F., Clapp, C., MacDonald, A. H. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    Article  Google Scholar 

  22. Yankowitz, M. et al. Electric field control of soliton motion and stacking in trilayer graphene. Nat. Mater. 13, 786–789 (2014).

    Article  Google Scholar 

  23. Wang, X. et al. Unfolding of vortices into topological stripes in a multiferroic material. Phys. Rev. Lett. 112, 247601 (2014).

    Article  Google Scholar 

  24. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  Google Scholar 

  25. Hull, D. & Bacon, D. J. Introduction to Dislocations 5th edn 63–83 (Butterworth-Heinemann, Oxford, 2011).

  26. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  Google Scholar 

  27. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  Google Scholar 

  28. Choi, J. S. et al. Friction anisotropy–driven domain imaging on exfoliated monolayer graphene. Science 333, 607–610 (2011).

    Article  Google Scholar 

  29. Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with M. Asta, D. Chrzan, B. Yacobson, M. Poschmann and R. Zucker. We thank A. Zettl, Y. Zhang, T. Wang and Y. Sheng for their help on sample preparation. The near-field infrared nanoscopy measurements and plasmon analysis was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under contract no. DE-AC02-05-CH11231 (Sub-wavelength Metamaterial Program) and National Key Research and Development Program of China (grant number 2016YFA0302001). The bilayer graphene DW sample fabrication and characterization is supported by the Office of Naval Research (award N00014-15-1-2651). L.J. acknowledges support from International Postdoctoral Exchange Fellowship Program 2016 (No.20160080). Z.S. acknowledges support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and Z.S. conceived the project. F.W., Y.-R.S. and H.-J.G. supervised the project. G.Z. helped to design the study with Z.S. and F.W. L.J., Z.S. and C.J. performed the near-field infrared measurements and DW manipulation work. S.W. and L.J. performed the SVM measurement. L.J. and S.Z. made the FET devices. M.I.B.U. carried out the SEM measurements. L.J., S.W., Z.S. and F.W. analysed the data. All authors discussed the results and contributed to writing the manuscript.

Corresponding authors

Correspondence to Zhiwen Shi or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Wang, S., Shi, Z. et al. Manipulation of domain-wall solitons in bi- and trilayer graphene. Nature Nanotech 13, 204–208 (2018). https://doi.org/10.1038/s41565-017-0042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-017-0042-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing