Nano-opto-electro-mechanical systems

A Publisher Correction to this article was published on 05 February 2018

This article has been updated


A new class of hybrid systems that couple optical, electrical and mechanical degrees of freedom in nanoscale devices is under development in laboratories worldwide. These nano-opto-electro-mechanical systems (NOEMS) offer unprecedented opportunities to control the flow of light in nanophotonic structures, at high speed and low power consumption. Drawing on conceptual and technological advances from the field of optomechanics, they also bear the potential for highly efficient, low-noise transducers between microwave and optical signals, in both the classical and the quantum domains. This Perspective discusses the fundamental physical limits of NOEMS, reviews the recent progress in their implementation and suggests potential avenues for further developments in this field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Physics of nano-opto-electro-mechanical systems.
Fig. 2: Examples of NOEMS applications.
Fig. 3: Opto-electro-mechanical signal transducers.

Change history

  • 05 February 2018

    In the version of this Perspective originally published, in Fig. 1, in the green box labelled ‘Mechanics’, an erroneous grey rectangle was included; it has now been removed and the figure replaced in the online versions of the Perspective.


  1. 1.

    Liu, K., Ran, Ye,C., Khan, S. & Sorger, V. J. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev. 9, 172–194 (2017).

    Article  Google Scholar 

  2. 2.

    Baker, C. et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt. Express 22, 14072–14086 (2014).

    Article  Google Scholar 

  3. 3.

    Faraon, A. & Vučković, J. Local temperature control of photonic crystal devices via micron-scale electrical heaters. Appl. Phys. Lett. 95, 043102 (2009).

    Article  Google Scholar 

  4. 4.

    Bennett, B. R., Soref, R. A. & Del Alamo, J. A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990).

    Article  Google Scholar 

  5. 5.

    Motamedi, M. E. MOEMS: Micro-opto-electro-mechanical Systems (SPIE, Bellingham, 2005).

  6. 6.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  7. 7.

    Miao, H., Srinivasan, K. & Aksyuk, V. A microelectromechanically controlled cavity optomechanical sensing system. New J. Phys. 14, 075015 (2012).

    Article  Google Scholar 

  8. 8.

    Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011).

  9. 9.

    Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

    Article  Google Scholar 

  10. 10.

    Taylor, J. M., Sørensen, A. S., Marcus, C. M. & Polzik, E. S. Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601 (2011).

    Article  Google Scholar 

  11. 11.

    Barzanjeh, S., Abdi, M., Milburn, G. J., Tombesi, P. & Vitali, D. Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012).

    Article  Google Scholar 

  12. 12.

    Wang, Y.-D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012).

    Article  Google Scholar 

  13. 13.

    Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012).

    Article  Google Scholar 

  14. 14.

    Tian, L. Optoelectromechanical transducer: reversible conversion between microwave and optical photons. Ann. Phys. 527, 1–14 (2015).

    Article  Google Scholar 

  15. 15.

    Javerzac-Galy, C. et al. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016).

    Article  Google Scholar 

  16. 16.

    Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    Article  Google Scholar 

  17. 17.

    Tsang, M. Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010).

    Article  Google Scholar 

  18. 18.

    Haigh, J. A., Nunnenkamp, A., Ramsay, A. J. & Ferguson, A. J. Triple-resonant Brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett. 117, 133602 (2016).

    Article  Google Scholar 

  19. 19.

    Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article  Google Scholar 

  20. 20.

    Zhang, X., Zhu, N., Zou, C.-L. & Tang, H. X. Optomagnonic whispering gallery microresonators. Phys. Rev. Lett. 117, 123605 (2016).

    Article  Google Scholar 

  21. 21.

    Zheludev, N. I. & Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotech. 11, 16–22 (2016).

    Article  Google Scholar 

  22. 22.

    Van Thourhout, D. & Roels, J. Optomechanical device actuation through the optical gradient force. Nat. Photon. 4, 211–217 (2010).

    Article  Google Scholar 

  23. 23.

    Peschot, A., Bonifaci, N., Lesaint, O., Valadares, C. & Poulain, C. Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen. Appl. Phys. Lett. 105, 123109 (2014).

    Article  Google Scholar 

  24. 24.

    Zhang, W.-M., Yan, H., Peng, Z.-K. & Meng, G. Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators Phys. 214, 187–218 (2014).

    Article  Google Scholar 

  25. 25.

    Thijssen, R., Verhagen, E., Kippenberg, T. J. & Polman, A. Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 13, 3293–3297 (2013).

    Article  Google Scholar 

  26. 26.

    Dennis, B. S. et al. Compact nanomechanical plasmonic phase modulators. Nat. Photon. 9, 267–273 (2015).

    Article  Google Scholar 

  27. 27.

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  Google Scholar 

  28. 28.

    Leijssen, R. & Verhagen, E. Strong optomechanical interactions in a sliced photonic crystal nanobeam. Sci. Rep. 5, 15974 (2015).

    Article  Google Scholar 

  29. 29.

    Pruessner, M. W. et al. End-coupled optical waveguide MEMS devices in the indium phosphide material system. J. Micromech. Microeng. 16, 832 (2006).

    Article  Google Scholar 

  30. 30.

    Lee, M.-C. M., Hah, D., Lau, E. K., Toshiyoshi, H. & Wu, M. MEMS-actuated photonic crystal switches. IEEE Photonics Technol. Lett. 18, 358–360 (2006).

    Article  Google Scholar 

  31. 31.

    Van Acoleyen, K. et al. Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator. IEEE Photonics J. 4, 779–788 (2012).

    Article  Google Scholar 

  32. 32.

    Pruessner, M. W., Park, D., Stievater, T. H., Kozak, D. A. & Rabinovich, W. S. Broadband opto-electro-mechanical effective refractive index tuning on a chip. Opt. Express 24, 13917–13930 (2016).

    Article  Google Scholar 

  33. 33.

    Akihama, Y. & Hane, K. Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers. Light Sci. Appl. 1, e16 (2012).

    Article  Google Scholar 

  34. 34.

    Takahashi, K., Kanamori, Y., Kokubun, Y. & Hane, K. A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator. Opt. Express 16, 14421 (2008).

    Article  Google Scholar 

  35. 35.

    Han, S., Seok, T. J., Quack, N., Yoo, B.-W. & Wu, M. C. Large-scale silicon photonic switches with movable directional couplers. Optica 2, 370 (2015).

    Article  Google Scholar 

  36. 36.

    Seok, T. J., Quack, N., Han, S., Muller, R. S. & Wu, M. C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3, 64–70 (2016).

    Article  Google Scholar 

  37. 37.

    Poot, M. & Tang, H. X. Broadband nanoelectromechanical phase shifting of light on a chip. Appl. Phys. Lett. 104, 061101 (2014).

    Article  Google Scholar 

  38. 38.

    Liu, T., Pagliano, F. & Fiore, A. Nano-opto-electro-mechanical switch based on a four-waveguide directional coupler. Opt. Express 25, 10166–10176 (2017).

    Article  Google Scholar 

  39. 39.

    Paraïso, T. K. et al. Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X 5, 041024 (2015).

    Google Scholar 

  40. 40.

    Deotare, P. B., McCutcheon, M. W., Frank, I. W., Khan, M. & Lončar, M. Coupled photonic crystal nanobeam cavities. Appl. Phys. Lett. 95, 031102–3 (2009).

    Article  Google Scholar 

  41. 41.

    Frank, I. W., Deotare, P. B., McCutcheon, M. W. & Loncar, M. Programmable photonic crystal nanobeam cavities. Opt. Express 18, 8705–8712 (2010).

    Article  Google Scholar 

  42. 42.

    Perahia, R., Cohen, J. D., Meenehan, S., Alegre, T. P. M. & Painter, O. Electrostatically tunable optomechanical ‘zipper’ cavity laser. Appl. Phys. Lett. 97, 191112–3 (2010).

    Article  Google Scholar 

  43. 43.

    Chew, X., Zhou, G., Chau, F. S. & Deng, J. Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities. IEEE Photonics Technol. Lett. 23, 1310–1312 (2011).

    Article  Google Scholar 

  44. 44.

    Midolo, L. et al. Electromechanical tuning of vertically-coupled photonic crystal nanobeams. Opt. Express 20, 19255–19263 (2012).

    Article  Google Scholar 

  45. 45.

    Winger, M. et al. A chip-scale integrated cavity-electro-optomechanics platform. Opt. Express 19, 24905–24921 (2011).

    Article  Google Scholar 

  46. 46.

    Midolo, L., van Veldhoven, P. J., Dündar, M. A., Nötzel, R. & Fiore, A. Electromechanical wavelength tuning of double-membrane photonic crystal cavities. Appl. Phys. Lett. 98, 211120 (2011).

    Article  Google Scholar 

  47. 47.

    Zobenica, Z. et al. in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), Paper SeW2E.4 (2016);

  48. 48.

    Notomi, M., Taniyama, H., Mitsugi, S. & Kuramochi, E. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006).

    Article  Google Scholar 

  49. 49.

    Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon. 10, 766–770 (2016).

    Article  Google Scholar 

  50. 50.

    Shi, P., Du, H., Chau, F. S., Zhou, G. & Deng, J. Tuning the quality factor of split nanobeam cavity by nanoelectromechanical systems. Opt. Express 23, 19338–19347 (2015).

    Article  Google Scholar 

  51. 51.

    Yao, J., Leuenberger, D., Lee, M.-C. M. & Wu, M. C. Silicon microtoroidal resonators with integrated MEMS tunable coupler. IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).

    Article  Google Scholar 

  52. 52.

    Ohta, R. et al. Electro-mechanical Q factor control of photonic crystal nanobeam cavity. Jpn. J. Appl. Phys. 52, 04CG01 (2013).

    Article  Google Scholar 

  53. 53.

    Cotrufo, M. et al. in Frontiers in Optics 2016, Paper FTu3D.7 (2016);

  54. 54.

    Elste, F., Girvin, S. M. & Clerk, A. A. Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett. 102, 207209 (2009).

    Article  Google Scholar 

  55. 55.

    Cotrufo, M., Fiore, A. & Verhagen, E. Coherent atom–phonon interaction through mode field coupling in hybrid optomechanical systems. Phys. Rev. Lett. 118, 133603 (2017).

    Article  Google Scholar 

  56. 56.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

  57. 57.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  58. 58.

    Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotech. 7, 509–514 (2012).

    Article  Google Scholar 

  59. 59.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  Google Scholar 

  60. 60.

    Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. 112, 3866–3873 (2015).

    Article  Google Scholar 

  61. 61.

    Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

    Article  Google Scholar 

  62. 62.

    Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Preprint at (2016).

  63. 63.

    Takeda, K. et al. Electro-mechano-optical NMR detection. Preprint at (2017).

  64. 64.

    Tallur, S. & Bhave, S. A. A silicon electromechanical photodetector. Nano Lett. 13, 2760–2765 (2013).

    Article  Google Scholar 

  65. 65.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article  Google Scholar 

  66. 66.

    Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotech. 12, 776–783 (2017).

    Article  Google Scholar 

  67. 67.

    Pitanti, A. et al. Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Opt. Express 23, 3196–3208 (2015).

    Article  Google Scholar 

  68. 68.

    Fink, J. M. et al. Quantum electromechanics on silicon nitride nanomembranes. Nat. Commun. 7, 12396 (2016).

    Article  Google Scholar 

  69. 69.

    Zou, C.-L., Han, X., Jiang, L. & Tang, H. X. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip. Phys. Rev. A 94, 013812 (2016).

    Article  Google Scholar 

  70. 70.

    Schliesser, A. & Kippenberg, T. J. in Advances in Atomic, Molecular, and Optical Physics (eds Arimondo, E., Berman, P. R. & Lin, C. C.) Ch 5, 207–323 (Academic, Cambridge, 2010).

  71. 71.

    Xiong, C., Fan, L., Sun, X. & Tang, H. X. Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators. Appl. Phys. Lett. 102, 021110 (2013).

    Article  Google Scholar 

  72. 72.

    Fong, K. Y., Fan, L., Jiang, L., Han, X. & Tang, H. X. Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Phys. Rev. A 90, 051801 (2014).

    Article  Google Scholar 

  73. 73.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article  Google Scholar 

  74. 74.

    Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014).

    Article  Google Scholar 

  75. 75.

    Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

    Article  Google Scholar 

  76. 76.

    Shumeiko, V. S. Quantum acousto-optic transducer for superconducting qubits. Phys. Rev. A 93, 023838 (2016).

    Article  Google Scholar 

  77. 77.

    Vainsencher, A., Satzinger, K. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl. Phys. Lett. 109, 033107 (2016).

    Article  Google Scholar 

  78. 78.

    Okada, A. et al. Cavity optomechanics with surface acoustic waves. Preprint at (2017).

  79. 79.

    Balram, K. C. et al. Acousto-optic modulation and optoacoustic gating in piezo-optomechanical circuits. Phys. Rev. Appl. 7, 024008 (2017).

    Article  Google Scholar 

  80. 80.

    Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    Article  Google Scholar 

  81. 81.

    Arrangoiz-Arriola, P. & Safavi-Naeini, A. H. Engineering interactions between superconducting qubits and phononic nanostructures. Phys. Rev. A 94, 063864 (2016).

    Article  Google Scholar 

  82. 82.

    Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

    Article  Google Scholar 

  83. 83.

    Černotík, O. & Hammerer, K. Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Phys. Rev. A 94, 012340 (2016).

    Article  Google Scholar 

  84. 84.

    Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  Google Scholar 

  85. 85.

    Xu, X.-W., Li, Y., Chen, A.-X. & Liu, Y. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Phys. Rev. A 93, 023827 (2016).

    Article  Google Scholar 

  86. 86.

    Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  87. 87.

    Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489–496 (2016).

    Article  Google Scholar 

  88. 88.

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    Google Scholar 

  89. 89.

    Benevides, R., Santos, F. G. S., Luiz, G. O., Wiederhecker, G. S. & Alegre, T. P. M. Ultrahigh-Q optomechanical crystals cavities fabricated in a CMOS foundry. Sci. Rep 7, 2491 (2017).

    Article  Google Scholar 

  90. 90.

    Marinis, T. F., Soucy, J. W., Lawrence, J. G. & Owens, M. M. in Proc. Electronic Components and Technology, 2005. ECTC ’05 Vol. 2 1081–1088 (2005);

  91. 91.

    Parker, L. Adiabatic invariance in simple harmonic motion. Am. J. Phys. 39, 24–27 (1971).

    Article  Google Scholar 

  92. 92.

    Povinelli, M. L. et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt. Express 13, 8286–8295 (2005).

    Article  Google Scholar 

  93. 93.

    Johnson, S. G. et al. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).

    Article  Google Scholar 

  94. 94.

    Midolo, L. & Fiore, A. Design and optical properties of electromechanical double-membrane photonic crystal cavities. IEEE J. Quantum Electron. 50, 404–414 (2014).

    Article  Google Scholar 

Download references


We thank N. Calabretta, M. Cotrufo, R. W. van der Heijden, M. Petruzzella, R. Stabile, K. Williams, Z. Zobenica, E. Verhagen, P. Lodahl, S. Stobbe and K. Srinivasan for discussions. The research leading to these results was funded by the European Union’s Horizon 2020 research and innovation programme (ERC project Q-CEOM, grant agreement no. 638765, and FET-proactive project HOT, grant agreement no. 732894), a starting grant and a postdoctoral grant from the Danish Council for Independent Research (grant nos. 4002-00060 and 4184-00203), the Dutch Technology Foundation STW, Applied Science Division of NWO, the Technology Program of the Ministry of Economic Affairs under projects nos. 10380 and 12662, and the Dutch Ministry of Education, Culture and Science under Gravity programme “Research Centre for Integrated Nanophotonics”.

Author information



Corresponding author

Correspondence to Leonardo Midolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nature Nanotech 13, 11–18 (2018).

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research