Perspective | Published:

Nano-opto-electro-mechanical systems

Nature Nanotechnologyvolume 13pages1118 (2018) | Download Citation

Abstract

A new class of hybrid systems that couple optical, electrical and mechanical degrees of freedom in nanoscale devices is under development in laboratories worldwide. These nano-opto-electro-mechanical systems (NOEMS) offer unprecedented opportunities to control the flow of light in nanophotonic structures, at high speed and low power consumption. Drawing on conceptual and technological advances from the field of optomechanics, they also bear the potential for highly efficient, low-noise transducers between microwave and optical signals, in both the classical and the quantum domains. This Perspective discusses the fundamental physical limits of NOEMS, reviews the recent progress in their implementation and suggests potential avenues for further developments in this field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41565-018-0066-6.

Change history

  • 05 February 2018

    In the version of this Perspective originally published, in Fig. 1, in the green box labelled ‘Mechanics’, an erroneous grey rectangle was included; it has now been removed and the figure replaced in the online versions of the Perspective.

References

  1. 1.

    Liu, K., Ran, Ye,C., Khan, S. & Sorger, V. J. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev. 9, 172–194 (2017).

  2. 2.

    Baker, C. et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt. Express 22, 14072–14086 (2014).

  3. 3.

    Faraon, A. & Vučković, J. Local temperature control of photonic crystal devices via micron-scale electrical heaters. Appl. Phys. Lett. 95, 043102 (2009).

  4. 4.

    Bennett, B. R., Soref, R. A. & Del Alamo, J. A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990).

  5. 5.

    Motamedi, M. E. MOEMS: Micro-opto-electro-mechanical Systems (SPIE, Bellingham, 2005).

  6. 6.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

  7. 7.

    Miao, H., Srinivasan, K. & Aksyuk, V. A microelectromechanically controlled cavity optomechanical sensing system. New J. Phys. 14, 075015 (2012).

  8. 8.

    Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011).

  9. 9.

    Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

  10. 10.

    Taylor, J. M., Sørensen, A. S., Marcus, C. M. & Polzik, E. S. Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601 (2011).

  11. 11.

    Barzanjeh, S., Abdi, M., Milburn, G. J., Tombesi, P. & Vitali, D. Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012).

  12. 12.

    Wang, Y.-D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012).

  13. 13.

    Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012).

  14. 14.

    Tian, L. Optoelectromechanical transducer: reversible conversion between microwave and optical photons. Ann. Phys. 527, 1–14 (2015).

  15. 15.

    Javerzac-Galy, C. et al. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016).

  16. 16.

    Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

  17. 17.

    Tsang, M. Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010).

  18. 18.

    Haigh, J. A., Nunnenkamp, A., Ramsay, A. J. & Ferguson, A. J. Triple-resonant Brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett. 117, 133602 (2016).

  19. 19.

    Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

  20. 20.

    Zhang, X., Zhu, N., Zou, C.-L. & Tang, H. X. Optomagnonic whispering gallery microresonators. Phys. Rev. Lett. 117, 123605 (2016).

  21. 21.

    Zheludev, N. I. & Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotech. 11, 16–22 (2016).

  22. 22.

    Van Thourhout, D. & Roels, J. Optomechanical device actuation through the optical gradient force. Nat. Photon. 4, 211–217 (2010).

  23. 23.

    Peschot, A., Bonifaci, N., Lesaint, O., Valadares, C. & Poulain, C. Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen. Appl. Phys. Lett. 105, 123109 (2014).

  24. 24.

    Zhang, W.-M., Yan, H., Peng, Z.-K. & Meng, G. Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators Phys. 214, 187–218 (2014).

  25. 25.

    Thijssen, R., Verhagen, E., Kippenberg, T. J. & Polman, A. Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 13, 3293–3297 (2013).

  26. 26.

    Dennis, B. S. et al. Compact nanomechanical plasmonic phase modulators. Nat. Photon. 9, 267–273 (2015).

  27. 27.

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

  28. 28.

    Leijssen, R. & Verhagen, E. Strong optomechanical interactions in a sliced photonic crystal nanobeam. Sci. Rep. 5, 15974 (2015).

  29. 29.

    Pruessner, M. W. et al. End-coupled optical waveguide MEMS devices in the indium phosphide material system. J. Micromech. Microeng. 16, 832 (2006).

  30. 30.

    Lee, M.-C. M., Hah, D., Lau, E. K., Toshiyoshi, H. & Wu, M. MEMS-actuated photonic crystal switches. IEEE Photonics Technol. Lett. 18, 358–360 (2006).

  31. 31.

    Van Acoleyen, K. et al. Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator. IEEE Photonics J. 4, 779–788 (2012).

  32. 32.

    Pruessner, M. W., Park, D., Stievater, T. H., Kozak, D. A. & Rabinovich, W. S. Broadband opto-electro-mechanical effective refractive index tuning on a chip. Opt. Express 24, 13917–13930 (2016).

  33. 33.

    Akihama, Y. & Hane, K. Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers. Light Sci. Appl. 1, e16 (2012).

  34. 34.

    Takahashi, K., Kanamori, Y., Kokubun, Y. & Hane, K. A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator. Opt. Express 16, 14421 (2008).

  35. 35.

    Han, S., Seok, T. J., Quack, N., Yoo, B.-W. & Wu, M. C. Large-scale silicon photonic switches with movable directional couplers. Optica 2, 370 (2015).

  36. 36.

    Seok, T. J., Quack, N., Han, S., Muller, R. S. & Wu, M. C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3, 64–70 (2016).

  37. 37.

    Poot, M. & Tang, H. X. Broadband nanoelectromechanical phase shifting of light on a chip. Appl. Phys. Lett. 104, 061101 (2014).

  38. 38.

    Liu, T., Pagliano, F. & Fiore, A. Nano-opto-electro-mechanical switch based on a four-waveguide directional coupler. Opt. Express 25, 10166–10176 (2017).

  39. 39.

    Paraïso, T. K. et al. Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X 5, 041024 (2015).

  40. 40.

    Deotare, P. B., McCutcheon, M. W., Frank, I. W., Khan, M. & Lončar, M. Coupled photonic crystal nanobeam cavities. Appl. Phys. Lett. 95, 031102–3 (2009).

  41. 41.

    Frank, I. W., Deotare, P. B., McCutcheon, M. W. & Loncar, M. Programmable photonic crystal nanobeam cavities. Opt. Express 18, 8705–8712 (2010).

  42. 42.

    Perahia, R., Cohen, J. D., Meenehan, S., Alegre, T. P. M. & Painter, O. Electrostatically tunable optomechanical ‘zipper’ cavity laser. Appl. Phys. Lett. 97, 191112–3 (2010).

  43. 43.

    Chew, X., Zhou, G., Chau, F. S. & Deng, J. Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities. IEEE Photonics Technol. Lett. 23, 1310–1312 (2011).

  44. 44.

    Midolo, L. et al. Electromechanical tuning of vertically-coupled photonic crystal nanobeams. Opt. Express 20, 19255–19263 (2012).

  45. 45.

    Winger, M. et al. A chip-scale integrated cavity-electro-optomechanics platform. Opt. Express 19, 24905–24921 (2011).

  46. 46.

    Midolo, L., van Veldhoven, P. J., Dündar, M. A., Nötzel, R. & Fiore, A. Electromechanical wavelength tuning of double-membrane photonic crystal cavities. Appl. Phys. Lett. 98, 211120 (2011).

  47. 47.

    Zobenica, Z. et al. in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), Paper SeW2E.4 (2016); https://doi.org/10.1364/SENSORS.2016.SeW2E.4.

  48. 48.

    Notomi, M., Taniyama, H., Mitsugi, S. & Kuramochi, E. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006).

  49. 49.

    Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon. 10, 766–770 (2016).

  50. 50.

    Shi, P., Du, H., Chau, F. S., Zhou, G. & Deng, J. Tuning the quality factor of split nanobeam cavity by nanoelectromechanical systems. Opt. Express 23, 19338–19347 (2015).

  51. 51.

    Yao, J., Leuenberger, D., Lee, M.-C. M. & Wu, M. C. Silicon microtoroidal resonators with integrated MEMS tunable coupler. IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).

  52. 52.

    Ohta, R. et al. Electro-mechanical Q factor control of photonic crystal nanobeam cavity. Jpn. J. Appl. Phys. 52, 04CG01 (2013).

  53. 53.

    Cotrufo, M. et al. in Frontiers in Optics 2016, Paper FTu3D.7 (2016); https://doi.org/10.1364/FIO.2016.FTu3D.7.

  54. 54.

    Elste, F., Girvin, S. M. & Clerk, A. A. Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett. 102, 207209 (2009).

  55. 55.

    Cotrufo, M., Fiore, A. & Verhagen, E. Coherent atom–phonon interaction through mode field coupling in hybrid optomechanical systems. Phys. Rev. Lett. 118, 133603 (2017).

  56. 56.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

  57. 57.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

  58. 58.

    Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotech. 7, 509–514 (2012).

  59. 59.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  60. 60.

    Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. 112, 3866–3873 (2015).

  61. 61.

    Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

  62. 62.

    Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Preprint at https://arxiv.org/abs/1610.01099 (2016).

  63. 63.

    Takeda, K. et al. Electro-mechano-optical NMR detection. Preprint at https://arxiv.org/abs/1706.00532 (2017).

  64. 64.

    Tallur, S. & Bhave, S. A. A silicon electromechanical photodetector. Nano Lett. 13, 2760–2765 (2013).

  65. 65.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

  66. 66.

    Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotech. 12, 776–783 (2017).

  67. 67.

    Pitanti, A. et al. Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Opt. Express 23, 3196–3208 (2015).

  68. 68.

    Fink, J. M. et al. Quantum electromechanics on silicon nitride nanomembranes. Nat. Commun. 7, 12396 (2016).

  69. 69.

    Zou, C.-L., Han, X., Jiang, L. & Tang, H. X. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip. Phys. Rev. A 94, 013812 (2016).

  70. 70.

    Schliesser, A. & Kippenberg, T. J. in Advances in Atomic, Molecular, and Optical Physics (eds Arimondo, E., Berman, P. R. & Lin, C. C.) Ch 5, 207–323 (Academic, Cambridge, 2010).

  71. 71.

    Xiong, C., Fan, L., Sun, X. & Tang, H. X. Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators. Appl. Phys. Lett. 102, 021110 (2013).

  72. 72.

    Fong, K. Y., Fan, L., Jiang, L., Han, X. & Tang, H. X. Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Phys. Rev. A 90, 051801 (2014).

  73. 73.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

  74. 74.

    Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014).

  75. 75.

    Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

  76. 76.

    Shumeiko, V. S. Quantum acousto-optic transducer for superconducting qubits. Phys. Rev. A 93, 023838 (2016).

  77. 77.

    Vainsencher, A., Satzinger, K. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl. Phys. Lett. 109, 033107 (2016).

  78. 78.

    Okada, A. et al. Cavity optomechanics with surface acoustic waves. Preprint at https://arxiv.org/abs/1705.04593 (2017).

  79. 79.

    Balram, K. C. et al. Acousto-optic modulation and optoacoustic gating in piezo-optomechanical circuits. Phys. Rev. Appl. 7, 024008 (2017).

  80. 80.

    Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

  81. 81.

    Arrangoiz-Arriola, P. & Safavi-Naeini, A. H. Engineering interactions between superconducting qubits and phononic nanostructures. Phys. Rev. A 94, 063864 (2016).

  82. 82.

    Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

  83. 83.

    Černotík, O. & Hammerer, K. Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Phys. Rev. A 94, 012340 (2016).

  84. 84.

    Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

  85. 85.

    Xu, X.-W., Li, Y., Chen, A.-X. & Liu, Y. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Phys. Rev. A 93, 023827 (2016).

  86. 86.

    Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

  87. 87.

    Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489–496 (2016).

  88. 88.

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

  89. 89.

    Benevides, R., Santos, F. G. S., Luiz, G. O., Wiederhecker, G. S. & Alegre, T. P. M. Ultrahigh-Q optomechanical crystals cavities fabricated in a CMOS foundry. Sci. Rep 7, 2491 (2017).

  90. 90.

    Marinis, T. F., Soucy, J. W., Lawrence, J. G. & Owens, M. M. in Proc. Electronic Components and Technology, 2005. ECTC ’05 Vol. 2 1081–1088 (2005); https://doi.org/10.1109/ECTC.2005.1441406.

  91. 91.

    Parker, L. Adiabatic invariance in simple harmonic motion. Am. J. Phys. 39, 24–27 (1971).

  92. 92.

    Povinelli, M. L. et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt. Express 13, 8286–8295 (2005).

  93. 93.

    Johnson, S. G. et al. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).

  94. 94.

    Midolo, L. & Fiore, A. Design and optical properties of electromechanical double-membrane photonic crystal cavities. IEEE J. Quantum Electron. 50, 404–414 (2014).

Download references

Acknowledgements

We thank N. Calabretta, M. Cotrufo, R. W. van der Heijden, M. Petruzzella, R. Stabile, K. Williams, Z. Zobenica, E. Verhagen, P. Lodahl, S. Stobbe and K. Srinivasan for discussions. The research leading to these results was funded by the European Union’s Horizon 2020 research and innovation programme (ERC project Q-CEOM, grant agreement no. 638765, and FET-proactive project HOT, grant agreement no. 732894), a starting grant and a postdoctoral grant from the Danish Council for Independent Research (grant nos. 4002-00060 and 4184-00203), the Dutch Technology Foundation STW, Applied Science Division of NWO, the Technology Program of the Ministry of Economic Affairs under projects nos. 10380 and 12662, and the Dutch Ministry of Education, Culture and Science under Gravity programme “Research Centre for Integrated Nanophotonics”.

Author information

Affiliations

  1. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    • Leonardo Midolo
    •  & Albert Schliesser
  2. Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, Eindhoven, The Netherlands

    • Andrea Fiore

Authors

  1. Search for Leonardo Midolo in:

  2. Search for Albert Schliesser in:

  3. Search for Andrea Fiore in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Leonardo Midolo.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-017-0039-1