Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design

Abstract

Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characterization of gold nanoparticles before and after addition to SBRs.
Fig. 2: Taxonomic shifts in the SBR microbial community structure throughout the nanoparticle-dosing period.
Fig. 3: MDS ordination of Bray–Curtis similarity.
Fig. 4: Relative abundance of ARG classes normalized to 16S rRNA gene abundance.
Fig. 5: Relative abundance of MRG classes (number of MRGs of each class normalized to 16S rRNA gene abundance).

References

  1. 1.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  2. 2.

    Gottschalk, F., Sonderer, T., Scholz, R. W. & Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222 (2009).

    Article  Google Scholar 

  3. 3.

    Mahapatra, I. et al. Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J. Nanobiotechnol. 13, 93 (2015).

    Article  Google Scholar 

  4. 4.

    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).

    Article  Google Scholar 

  5. 5.

    Briones, A. & Raskin, L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol. 14, 270–276 (2003).

    Article  Google Scholar 

  6. 6.

    Zhang, T., Shao, M. F. & Ye, L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6, 1137–1147 (2012).

    Article  Google Scholar 

  7. 7.

    Grady, C. L. Jr, Daigger, G. T., Love, N. G. & Filipe, C. D. Biological Wastewater Treatment (CRC, Boca Raton, FL,, 2011).

    Google Scholar 

  8. 8.

    Hajipour, M. J. et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012).

    Article  Google Scholar 

  9. 9.

    Ma, Y. et al. Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Res. 68, 87–97 (2015).

    Article  Google Scholar 

  10. 10.

    Yang, Y. et al. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Res. 48, 317–325 (2014).

    Article  Google Scholar 

  11. 11.

    Loman, N. J. et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat. Rev. Microbiol. 10, 599–606 (2012).

    Article  Google Scholar 

  12. 12.

    Simon, C. & Daniel, R. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77, 1153–1161 (2011).

    Article  Google Scholar 

  13. 13.

    Suresh, A. K., Pelletier, D. A. & Doktycz, M. J. Relating nanomaterial properties and microbial toxicity. Nanoscale 5, 463–474 (2013).

    Article  Google Scholar 

  14. 14.

    Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  Google Scholar 

  15. 15.

    Gorka, D. E. et al. Reducing environmental toxicity of silver nanoparticles through shape control. Environ. Sci. Technol. 49, 10093–10098 (2015).

    Article  Google Scholar 

  16. 16.

    El Badawy, A. M. et al. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 45, 283–287 (2011).

    Article  Google Scholar 

  17. 17.

    Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007).

    Article  Google Scholar 

  18. 18.

    Tong, T. et al. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ. Sci. Technol. 47, 12486–12495 (2013).

    Article  Google Scholar 

  19. 19.

    Burns, J. M. et al. Surface charge controls the fate of Au nanorods in saline estuaries. Environ. Sci. Technol. 47, 12844–12851 (2013).

    Article  Google Scholar 

  20. 20.

    Ferry, J. L. et al. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat. Nanotech. 4, 441–444 (2009).

    Article  Google Scholar 

  21. 21.

    Alkilany, A. M. & Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res. 12, 2313–2333 (2010).

    Article  Google Scholar 

  22. 22.

    Monopoli, M. P., Bombelli, F. B. & Dawson, K. A. Nanobiotechnology: nanoparticle coronas take shape. Nat. Nanotech. 6, 11–12 (2011).

    Article  Google Scholar 

  23. 23.

    Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotech. 8, 772–781 (2013).

    Article  Google Scholar 

  24. 24.

    Kaegi, R. et al. Behavior of silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 45, 3902–3908 (2011).

    Article  Google Scholar 

  25. 25.

    Keller, A. A. & Lazareva, A. Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett. 1, 65–70 (2014).

    Article  Google Scholar 

  26. 26.

    Siripong, S. & Rittmann, B. E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 41, 1110–1120 (2007).

    Article  Google Scholar 

  27. 27.

    Tomlinson, T. G., Boon, A. G. & Trotman, C. N. Inhibition of nitrification in the activated sludge process of sewage disposal. J. Appl. Bacteriol. 29, 266–291 (1966).

    Article  Google Scholar 

  28. 28.

    Choi, O. & Hu, Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42, 4583–4588 (2008).

    Article  Google Scholar 

  29. 29.

    Arnaout, C. L. & Gunsch, C. K. Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environ. Sci. Technol. 46, 5387–5395 (2012).

    Article  Google Scholar 

  30. 30.

    Meyer, F. et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    Article  Google Scholar 

  31. 31.

    Ju, F., Guo, F., Ye, L., Xia, Y. & Zhang, T. Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. Environ. Microbiol. Rep. 6, 80–89 (2014).

    Article  Google Scholar 

  32. 32.

    Yang, C. et al. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants. Environ. Sci. Technol. 45, 7408–7415 (2011).

    Article  Google Scholar 

  33. 33.

    Pruden, A., Pei, R., Storteboom, H. & Carlson, K. H. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ. Sci. Technol. 40, 7445–7450 (2006).

    Article  Google Scholar 

  34. 34.

    Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182 (2006).

    Article  Google Scholar 

  35. 35.

    Ma, Y., Metch, J. W., Yang, Y., Pruden, A. & Zhang, T. Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment. FEMS Microbiol Ecol. 92, fiw022 (2016).

  36. 36.

    Poole, K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20, 227–234 (2012).

    Article  Google Scholar 

  37. 37.

    Zhang, T., Zhang, X. X. & Ye, L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE 6, e26041 (2011).

    Article  Google Scholar 

  38. 38.

    Arango-Argoty, G. et al. MetaStorm: a public resource for customizable metagenomic annotation. PLoS ONE 11, e0162442 (2016).

    Article  Google Scholar 

  39. 39.

    McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).

    Article  Google Scholar 

  40. 40.

    Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E. & Larsson, D. G. J. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 42, 737–743 (2014).

    Article  Google Scholar 

  41. 41.

    Leplae, R., Lima-Mendez, G. & Toussaint, A. ACLAME: a classification of mobile genetic elements, update 2010. Nucleic Acids Res. 38, D57–D61 (2009).

    Article  Google Scholar 

  42. 42.

    Alkilany, A. M. et al. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5, 701–708 (2009).

    Article  Google Scholar 

  43. 43.

    González, S., Petrovic, M. & Barceló, D. Removal of a broad range of surfactants from municipal wastewater—Comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere 67, 335–343 (2007).

    Article  Google Scholar 

  44. 44.

    Zeng, G. et al. Co-digestion with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation 18, 303–310 (2007).

    Article  Google Scholar 

  45. 45.

    Gagner, J. E., Lopez, M. D., Dordick, J. S. & Siegel, R. W. Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32, 7241–7252 (2011).

    Article  Google Scholar 

  46. 46.

    Sisco, P. N. et al. Adsorption of cellular proteins to polyelectrolyte-functionalized gold nanorods: a mechanism for nanoparticle regulation of cell phenotype? 9, e86670 (2014).

  47. 47.

    Joshi, N., Ngwenya, B. T. & French, C. E. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J. Hazard. Mater. 241, 363–370 (2012).

    Article  Google Scholar 

  48. 48.

    McSwain, B. S., Irvine, R. L., Hausner, M. & Wilderer, P. A. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol. 71, 1051–1057 (2005).

    Article  Google Scholar 

  49. 49.

    Center for Disease Control and Prevention. Antibiotic Resistance Threats in the United States (US Department of Health and Human Services, 2013); http://www.cdc.gov/drugresistance/threat-report-2013/

  50. 50.

    Klaine, S. J. et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851 (2008).

    Article  Google Scholar 

  51. 51.

    American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater (American Water Works Association and Water Environment Federation, 1998).

  52. 52.

    Murphy, C. J., Gole, A. M., Hunyadi, S. E. & Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 7544–7554 (2006).

    Article  Google Scholar 

  53. 53.

    Sau, T. K. & Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20, 6414–6420 (2004).

    Article  Google Scholar 

  54. 54.

    Chan, M. Y. & Vikesland, P. J. Porous media-induced aggregation of protein-stabilized gold nanoparticles. Environ. Sci. Technol. 48, 1532–1540 (2014).

    Article  Google Scholar 

  55. 55.

    Bowman, J. L., Floyd, S. K. & Sakakibara, K. Green genes—comparative genomics of the green branch of life. Cell 129, 229–234 (2007).

    Article  Google Scholar 

  56. 56.

    Legendre, P. & De Caceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation (NSF) PIRE: Halting Environmental Antimicrobial Resistance Dissemination (award no. OISE:1545756) and NSF CBET:1336353, the US Environmental Protection Agency (Star Grant no. 834856), the Center for the Environmental Implications of Nanotechnology (EF-0830093), the Water Environment Research Foundation Paul L. Busch Award and the Virginia Tech Institute for Critical Technology and Applied Science. The authors also thank R. Jones for help in maintaining the SBRs, M. Chan for assisting in the electrophoretic mobility measurements and W. Leng for assistance in the TEM sample preparation.

Author information

Affiliations

Authors

Contributions

J.W.M., P.J.V. and A.P. conceived and designed the study. N.D.B. and C.J.M. synthesized and characterized the nanoparticles. J.W.M. performed the experiments. J.W.M., P.J.V. and A.P. analysed the data. All the authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Amy Pruden or Peter J. Vikesland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Table 1, Supplementary Discussion

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metch, J.W., Burrows, N.D., Murphy, C.J. et al. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. Nature Nanotech 13, 253–259 (2018). https://doi.org/10.1038/s41565-017-0029-3

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research