Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrahard carbon film from epitaxial two-layer graphene

An Author Correction to this article was published on 21 May 2018

This article has been updated

Abstract

Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2 to sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TEM images and experimental stiffness curves for multilayer epitaxial graphene and buffer layer on SiC.
Fig. 2: Experimental stiffness measurements in 2-L graphene.
Fig. 3: Microhardness and C-AFM measurements.
Fig. 4: DFT and indentation calculations.

Similar content being viewed by others

Change history

  • 21 May 2018

    In the version of this Article originally published, the second affiliation for Walter A. de Heer had not been included; it should be ‘TICNN, Tianjin University, Tianjin, China’. This has now been added and the numbering of subsequent affiliations amended accordingly in all versions of the Article.

References

  1. Cynn, H., Klepeis, J. E., Yoo, C. S. & Young, D. A. Osmium has the lowest experimentally determined compressibility. Phys. Rev. Lett. 88, 135701 (2002).

    Article  Google Scholar 

  2. Narayan, J., Godbole, V. P. & White, C. W. Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416–418 (1991).

    Article  CAS  Google Scholar 

  3. Jaglinski, T., Kochmann, D., Stone, D. & Lakes, R. S. Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620–622 (2007).

    Article  CAS  Google Scholar 

  4. Aust, R. B. & Drickamer, H. G. Carbon: A new crystalline phase. Science 140, 817–819 (1963).

    Article  CAS  Google Scholar 

  5. Bundy, F. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

    Article  CAS  Google Scholar 

  6. Gorrini, F. et al. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci. Rep. 6, 35244 (2016).

    Article  CAS  Google Scholar 

  7. Horbatenko, Y. et al. Synergetic interplay between pressure and surface chemistry for the conversion of sp 2-bonded carbon layers into sp 3-bonded carbon films. Carbon 106, 158–163 (2016).

    Article  CAS  Google Scholar 

  8. Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011).

    Article  CAS  Google Scholar 

  9. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    Article  CAS  Google Scholar 

  10. Odkhuu, D., Shin, D., Ruoff, R. S. & Park, N. Conversion of multilayer graphene into continuous ultrathin sp 3-bonded carbon films on metal surfaces. Sci. Rep. 3, 3276 (2013).

    Article  Google Scholar 

  11. Scandolo, S., Bernasconi, M., Chiarotti, G. L., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995).

    Article  CAS  Google Scholar 

  12. Xie, H., Yin, F., Yu, T., Wang, J.-T. & Liang, C. Mechanism for direct graphite-to-diamond phase transition. Sci. Rep. 4, 5930 (2014).

    Article  CAS  Google Scholar 

  13. Barboza, A. P. et al. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 23, 3014–3017 (2011).

    Article  CAS  Google Scholar 

  14. Rajasekaran, S., Abild-Pedersen, F., Ogasawara, H., Nilsson, A. & Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 111, 085503 (2013).

    Article  Google Scholar 

  15. Luo, Z. et al. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 3, 1781–1788 (2009).

    Article  CAS  Google Scholar 

  16. Martins, L. G. P. et al. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 8, 96 (2017).

    Article  Google Scholar 

  17. Kvashnin, A. G., Chernozatonskii, L. A., Yakobson, B. I. & Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 14, 676–681 (2014).

    Article  CAS  Google Scholar 

  18. Chernozatonskii, L. A., Sorokin, P. B., Kvashnin, A. G. & Kvashnin, D. G. Diamond-like C2H nanolayer, diamane: simulation of the structure and properties. JETP Lett. 90, 134–138 (2009).

    Article  CAS  Google Scholar 

  19. Gao, Y. et al. Elastic coupling between layers in two-dimensional materials. Nat. Mater. 14, 714–720 (2015).

    Article  CAS  Google Scholar 

  20. de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

    Article  Google Scholar 

  21. Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D 43, 374009 (2010).

    Article  Google Scholar 

  22. Palaci, I. et al. Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005).

    Article  CAS  Google Scholar 

  23. Lucas, M., Mai, W., Yang, R., Wang, Z. L. & Riedo, E. Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett. 7, 1314–1317 (2007).

    Article  CAS  Google Scholar 

  24. Chiu, H. C., Kim, S., Klinke, C. & Riedo, E. Morphology dependence of radial elasticity in multiwalled boron nitride nanotubes. Appl. Phys. Lett. 101, 103109 (2012).

    Article  Google Scholar 

  25. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  26. Kelly, B. T. Physics of Graphite (Springer, London, 1981).

  27. Kumar, S. & Parks, D. M. Strain shielding from mechanically activated covalent bond formation during nanoindentation of graphene delays the onset of failure. Nano Lett. 15, 1503–1510 (2015).

    Article  CAS  Google Scholar 

  28. Richter, A., Ries, R., Smith, R., Henkel, M. & Wolf, B. Nanoindentation of diamond, graphite and fullerene films. Diam. Relat. Mater. 9, 170–184 (2000).

    Article  CAS  Google Scholar 

  29. Lucas, M., Gall, K. & Riedo, E. Tip size effects on atomic force microscopy nanoindentation of a gold single crystal. J. Appl. Phys. 104, 113515 (2008).

    Article  Google Scholar 

  30. Deng, X., Chawla, N., Chawla, K. K., Koopman, M. & Chu, J. P. Mechanical behavior of multilayered nanoscale metal–ceramic composites. Adv. Eng. Mater. 7, 1099–1108 (2005).

    Article  CAS  Google Scholar 

  31. Kulikovsky, V. et al. Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films. Surf. Coat. Technol. 202, 1738–1745 (2008).

    Article  CAS  Google Scholar 

  32. Kvashnin, A. G. & Sorokin, P. B. Lonsdaleite films with nanometer thickness. J. Phys. Chem. Lett. 5, 541–548 (2014).

    Article  CAS  Google Scholar 

  33. Wei, Z. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

    Article  CAS  Google Scholar 

  34. Berger, C. et al. in Graphene Growth on Semiconductors (eds N. Motta, F. Iacopi, & C. Coletti) 181–199 (Pan Stanford Publishing Pte, Singapore, 2016).

  35. Filleter, T., Emtsev, K., Seyller, T. & Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93, 133117 (2008).

    Article  Google Scholar 

  36. Gallagher, P. et al. Switchable friction enabled by nanoscale self-assembly on graphene. Nat. Commun. 7, 10745 (2016).

    Article  CAS  Google Scholar 

  37. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  38. Kim, S. et al. Room-temperature metastability of multilayer graphene oxide films. Nat. Mater. 11, 544–549 (2012).

    Article  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  40. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Office of Basic Energy Sciences of the US Department of Energy (grant no. DE-SC0016204). E.T. thanks the European ERC (320796 MODPHYSFRICT). The authors acknowledge support from the CUNY High Performance Computing Center and the Extreme Science and Engineering Discovery Environment (XSEDE). The authors thank T. Wang for support with TEM measurements, C. Dean for insights on the C-AFM measurements, and M. Moseler for discussions on indentation simulations.

Author information

Authors and Affiliations

Authors

Contributions

Y.G. and F.C. performed nanomechanics experiments and data analysis. T.C. carried out DFT calculations and indentation simulations. E.R. conceived and designed the experiments and analysed the data. A.B. and E.T. analysed the experimental data and delineated the modelling strategy. C.B. and W.A.d.H. synthesized the EG samples. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Elisa Riedo or Angelo Bongiorno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Cao, T., Cellini, F. et al. Ultrahard carbon film from epitaxial two-layer graphene. Nature Nanotech 13, 133–138 (2018). https://doi.org/10.1038/s41565-017-0023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-017-0023-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing