Article | Published:

Ultrahard carbon film from epitaxial two-layer graphene

Nature Nanotechnologyvolume 13pages133138 (2018) | Download Citation


Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2 to sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 17 May 2018

    In the version of this Article originally published, an error during typesetting led to the curve in Fig. 2a being shifted to the right, and the curves in the inset of Fig. 2a being displaced. The figure has now been corrected in all versions of the Article; the original and corrected Fig. 2a are shown below.

  • 21 May 2018

    In the version of this Article originally published, the second affiliation for Walter A. de Heer had not been included; it should be ‘TICNN, Tianjin University, Tianjin, China’. This has now been added and the numbering of subsequent affiliations amended accordingly in all versions of the Article.


  1. 1.

    Cynn, H., Klepeis, J. E., Yoo, C. S. & Young, D. A. Osmium has the lowest experimentally determined compressibility. Phys. Rev. Lett. 88, 135701 (2002).

  2. 2.

    Narayan, J., Godbole, V. P. & White, C. W. Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416–418 (1991).

  3. 3.

    Jaglinski, T., Kochmann, D., Stone, D. & Lakes, R. S. Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620–622 (2007).

  4. 4.

    Aust, R. B. & Drickamer, H. G. Carbon: A new crystalline phase. Science 140, 817–819 (1963).

  5. 5.

    Bundy, F. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

  6. 6.

    Gorrini, F. et al. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci. Rep. 6, 35244 (2016).

  7. 7.

    Horbatenko, Y. et al. Synergetic interplay between pressure and surface chemistry for the conversion of sp 2-bonded carbon layers into sp 3-bonded carbon films. Carbon 106, 158–163 (2016).

  8. 8.

    Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011).

  9. 9.

    Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

  10. 10.

    Odkhuu, D., Shin, D., Ruoff, R. S. & Park, N. Conversion of multilayer graphene into continuous ultrathin sp 3-bonded carbon films on metal surfaces. Sci. Rep. 3, 3276 (2013).

  11. 11.

    Scandolo, S., Bernasconi, M., Chiarotti, G. L., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995).

  12. 12.

    Xie, H., Yin, F., Yu, T., Wang, J.-T. & Liang, C. Mechanism for direct graphite-to-diamond phase transition. Sci. Rep. 4, 5930 (2014).

  13. 13.

    Barboza, A. P. et al. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 23, 3014–3017 (2011).

  14. 14.

    Rajasekaran, S., Abild-Pedersen, F., Ogasawara, H., Nilsson, A. & Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 111, 085503 (2013).

  15. 15.

    Luo, Z. et al. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 3, 1781–1788 (2009).

  16. 16.

    Martins, L. G. P. et al. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 8, 96 (2017).

  17. 17.

    Kvashnin, A. G., Chernozatonskii, L. A., Yakobson, B. I. & Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 14, 676–681 (2014).

  18. 18.

    Chernozatonskii, L. A., Sorokin, P. B., Kvashnin, A. G. & Kvashnin, D. G. Diamond-like C2H nanolayer, diamane: simulation of the structure and properties. JETP Lett. 90, 134–138 (2009).

  19. 19.

    Gao, Y. et al. Elastic coupling between layers in two-dimensional materials. Nat. Mater. 14, 714–720 (2015).

  20. 20.

    de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

  21. 21.

    Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D 43, 374009 (2010).

  22. 22.

    Palaci, I. et al. Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005).

  23. 23.

    Lucas, M., Mai, W., Yang, R., Wang, Z. L. & Riedo, E. Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett. 7, 1314–1317 (2007).

  24. 24.

    Chiu, H. C., Kim, S., Klinke, C. & Riedo, E. Morphology dependence of radial elasticity in multiwalled boron nitride nanotubes. Appl. Phys. Lett. 101, 103109 (2012).

  25. 25.

    Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

  26. 26.

    Kelly, B. T. Physics of Graphite (Springer, London, 1981).

  27. 27.

    Kumar, S. & Parks, D. M. Strain shielding from mechanically activated covalent bond formation during nanoindentation of graphene delays the onset of failure. Nano Lett. 15, 1503–1510 (2015).

  28. 28.

    Richter, A., Ries, R., Smith, R., Henkel, M. & Wolf, B. Nanoindentation of diamond, graphite and fullerene films. Diam. Relat. Mater. 9, 170–184 (2000).

  29. 29.

    Lucas, M., Gall, K. & Riedo, E. Tip size effects on atomic force microscopy nanoindentation of a gold single crystal. J. Appl. Phys. 104, 113515 (2008).

  30. 30.

    Deng, X., Chawla, N., Chawla, K. K., Koopman, M. & Chu, J. P. Mechanical behavior of multilayered nanoscale metal–ceramic composites. Adv. Eng. Mater. 7, 1099–1108 (2005).

  31. 31.

    Kulikovsky, V. et al. Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films. Surf. Coat. Technol. 202, 1738–1745 (2008).

  32. 32.

    Kvashnin, A. G. & Sorokin, P. B. Lonsdaleite films with nanometer thickness. J. Phys. Chem. Lett. 5, 541–548 (2014).

  33. 33.

    Wei, Z. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

  34. 34.

    Berger, C. et al. in Graphene Growth on Semiconductors (eds N. Motta, F. Iacopi, & C. Coletti) 181–199 (Pan Stanford Publishing Pte, Singapore, 2016).

  35. 35.

    Filleter, T., Emtsev, K., Seyller, T. & Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93, 133117 (2008).

  36. 36.

    Gallagher, P. et al. Switchable friction enabled by nanoscale self-assembly on graphene. Nat. Commun. 7, 10745 (2016).

  37. 37.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  38. 38.

    Kim, S. et al. Room-temperature metastability of multilayer graphene oxide films. Nat. Mater. 11, 544–549 (2012).

  39. 39.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

  40. 40.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem 27, 1787–1799 (2006).

Download references


The authors acknowledge support from the Office of Basic Energy Sciences of the US Department of Energy (grant no. DE-SC0016204). E.T. thanks the European ERC (320796 MODPHYSFRICT). The authors acknowledge support from the CUNY High Performance Computing Center and the Extreme Science and Engineering Discovery Environment (XSEDE). The authors thank T. Wang for support with TEM measurements, C. Dean for insights on the C-AFM measurements, and M. Moseler for discussions on indentation simulations.

Author information

Author notes

  1. Yang Gao and Tengfei Cao contributed equally to this work.


  1. Advanced Science Research Center, City University of New York, New York, NY, USA

    • Yang Gao
    • , Tengfei Cao
    • , Filippo Cellini
    •  & Elisa Riedo
  2. School of Physics, Georgia Institute of Technology, Atlanta, GA, USA

    • Yang Gao
    • , Claire Berger
    • , Walter A. de Heer
    •  & Elisa Riedo
  3. Department of Chemistry, College of Staten Island, City University of New York, Staten Island, NY, USA

    • Tengfei Cao
    •  & Angelo Bongiorno
  4. Institut Néel, CNRS- University Grenoble-Alpes, Grenoble, France

    • Claire Berger
  5. TICNN, Tianjin University, Tianjin, China

    • Walter A. de Heer
  6. Abdus Salam ICTP, Trieste, Italy

    • Erio Tosatti
  7. SISSA, Trieste, Italy

    • Erio Tosatti
  8. Physics Department, City College of New York, City University of New York, New York, NY, USA

    • Elisa Riedo
  9. CUNY Graduate Center, Ph.D. Program in Physics, New York, NY, USA

    • Elisa Riedo
    •  & Angelo Bongiorno
  10. CUNY Graduate Center, Ph.D. Program in Chemistry, New York, NY, USA

    • Angelo Bongiorno


  1. Search for Yang Gao in:

  2. Search for Tengfei Cao in:

  3. Search for Filippo Cellini in:

  4. Search for Claire Berger in:

  5. Search for Walter A. de Heer in:

  6. Search for Erio Tosatti in:

  7. Search for Elisa Riedo in:

  8. Search for Angelo Bongiorno in:


Y.G. and F.C. performed nanomechanics experiments and data analysis. T.C. carried out DFT calculations and indentation simulations. E.R. conceived and designed the experiments and analysed the data. A.B. and E.T. analysed the experimental data and delineated the modelling strategy. C.B. and W.A.d.H. synthesized the EG samples. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Elisa Riedo or Angelo Bongiorno.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–17, Supplementary references

About this article

Publication history