Article | Published:

Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

Nature Nanotechnologyvolume 13pages159164 (2018) | Download Citation

Abstract

Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

  2. 2.

    Schneider, N. L., Schull, G. & Berndt, R. Optical probe of quantum shot-noise reduction at single-atom contact. Phys. Rev. Lett. 105, 026601 (2010).

  3. 3.

    Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

  4. 4.

    Dong, Z. G. et al. Electrically-excited surface plasmon polaritons with directionality control. ACS Photon. 2, 385–391 (2015).

  5. 5.

    Du, W. et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer. Nat. Photon. 10, 274–280 (2016).

  6. 6.

    Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

  7. 7.

    Parzefall, M. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nat. Nanotech. 10, 1058–1063 (2015).

  8. 8.

    Bigourdan, F., Hugonin, J.-P., Marquier, F., Sauvan, C. & Greffet, J.-J. Nanoantenna for electrical generation of surface plasmon polaritons. Phys. Rev. Lett. 116, 106803 (2016).

  9. 9.

    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

  10. 10.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015).

  11. 11.

    Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotech. 10, 770–774 (2015).

  12. 12.

    Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotech. 8, 247–251 (2013).

  13. 13.

    Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

  14. 14.

    Christopher, P., Xin, H. L. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

  15. 15.

    Kumar, A., Kumar, S., Rhim, W.-K., Kim, G.-H. & Nam, J.-M. Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures. J. Am. Chem. Soc. 136, 16317–16325 (2014).

  16. 16.

    Zhai, Y. M. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in a plasmon-driven synthesis. Nat. Mater. 15, 889–895 (2016).

  17. 17.

    Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 701–704 (2011).

  18. 18.

    Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

  19. 19.

    Lock, D., Rusimova, K. R., Pan, T. L., Palmer, R. E. & Sloan, P. A. Atomically resolved real-space imaging of hot electron dynamics. Nat. Commun. 6, 8365 (2015).

  20. 20.

    Albrecht, T. Electrochemical tunnelling sensors and their potential applications. Nat. Commun. 3, 829 (2012).

  21. 21.

    Wang, D. D. et al. Tuning the tunneling rate and dielectric response of SAM-based junctions via a single polarizable atom. Adv. Mater. 27, 6689–6695 (2015).

  22. 22.

    Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009).

  23. 23.

    Nasir, M. E., Dickson, W., Wurtz, G. A., Wardley, W. P. & Zayats, A. V. Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials. Adv. Mater. 26, 3532–3537 (2014).

  24. 24.

    Yakovlev, V. V. et al. Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials. Adv. Mater. 25, 2351–2356 (2013).

  25. 25.

    Atkinson, R. et al. Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys. Rev. B 73, 235402 (2006).

  26. 26.

    Vasilantonakis, N., Nasir, M. E., Dickson, W., Wurtz, G. A. & Zayats, A. V. Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Lasers Photon. Rev. 9, 345–353 (2015).

  27. 27.

    Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

  28. 28.

    Johansson, P. Light emission from a scanning tunneling microscopy: fully retarded calculation. Phys. Rev. B 58, 10823–10834 (1998).

  29. 29.

    Downes, A., Taylor, M. E. & Welland, M. E. Two-sphere model of photon emission from the scanning tunneling microscope. Phys. Rev. B 57, 6706–6714 (1998).

  30. 30.

    Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

  31. 31.

    Zhao, L. –B. et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J. Phys. Chem. Lett. 5, 1259–1266 (2014).

  32. 32.

    Hahn, J. R., Jang, S. H., Kim, K. W. & Son, S. B. Hot carrier-selective chemical reactions on Ag(110). J. Chem. Phys. 139, 074707 (2013).

  33. 33.

    Canning, N. D. S., Outka, D. & Madix, R. J. The absorption of oxygen on gold. Surf. Sci. 141, 240–254 (1984).

  34. 34.

    Huang, Y.-F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53, 2353–2357 (2014).

  35. 35.

    Huang, Y.-F., Zhu, H.-P., Liu, G.-K., Ren, B. & Tian, Z.-Q. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010).

  36. 36.

    Zhao, L.-B. et al. Surface plasmon catalytic aerobic oxidation of aromatic amines in metal/molecule/metal junctions. J. Phys. Chem. C 120, 944–955 (2016).

  37. 37.

    Yalon, E., Riess, I. & Ritter, D. Heat dissipation in resistive switching devices: comparison of thermal simulations and experimental results. IEEE Trans. Electron. Devices 61, 1137–1144 (2014).

  38. 38.

    Davis, M. E. & Davis, R. J. Fundamentals of Chemical Reaction Engineering (McGraw Hill, New York, 2003).

  39. 39.

    Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

  40. 40.

    Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

  41. 41.

    Sil, D. et al. Seeing is believing: hot electron based gold nanoplasmonic optical hydrogen sensor. ACS Nano 8, 7755–7762 (2014).

  42. 42.

    Pfisterer, J. H. K., Liang, Y. C., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).

  43. 43.

    Chalabi, H., Schoen, D. & Brongersma, M. L. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014).

  44. 44.

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399–410 (2013).

  45. 45.

    Rendell, R. W. & Scalapino, D. J. Surface plasmons confined by microstructures on tunnel junctions. Phys. Rev. B 24, 3276–3294 (1981).

Download references

Acknowledgements

This work has been funded in part by the Engineering and Physical Sciences Research Council (UK) and the European Research Council iPLASMM project (321268). A.V.Z. acknowledges support from the Royal Society and the Wolfson Foundation. The authors thank W. P. Wardley for helpful discussion.

Author information

Author notes

  1. Pan Wang and Alexey V. Krasavin contributed equally to this work.

Affiliations

  1. Department of Physics, King’s College London, London, WC2R 2LS, UK

    • Pan Wang
    • , Alexey V. Krasavin
    • , Mazhar E. Nasir
    • , Wayne Dickson
    •  & Anatoly V. Zayats

Authors

  1. Search for Pan Wang in:

  2. Search for Alexey V. Krasavin in:

  3. Search for Mazhar E. Nasir in:

  4. Search for Wayne Dickson in:

  5. Search for Anatoly V. Zayats in:

Contributions

A.V.Z. and P.W. conceived the study. P.W. constructed the experiment, performed the measurement and analysed the data. M.E.N. and W.D. fabricated the plasmonic nanorod metamaterials. A.V.K. performed numerical simulations. All the authors discussed the results and co-wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Pan Wang or Anatoly V. Zayats.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–12.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-017-0017-7

Further reading