Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

Abstract

Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structural and optical properties of plasmonic nanorod metamaterials.
Fig. 2: Electrically driven nanorod metamaterial based on metal–air–metal tunnel junctions.
Fig. 3: Electrically driven nanorod metamaterial with reactive tunnel junctions.
Fig. 4: Electro-photo-chemistry in nanoscale tunnel junctions.

References

  1. 1.

    Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

    Article  Google Scholar 

  2. 2.

    Schneider, N. L., Schull, G. & Berndt, R. Optical probe of quantum shot-noise reduction at single-atom contact. Phys. Rev. Lett. 105, 026601 (2010).

    Article  Google Scholar 

  3. 3.

    Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article  Google Scholar 

  4. 4.

    Dong, Z. G. et al. Electrically-excited surface plasmon polaritons with directionality control. ACS Photon. 2, 385–391 (2015).

    Article  Google Scholar 

  5. 5.

    Du, W. et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer. Nat. Photon. 10, 274–280 (2016).

    Article  Google Scholar 

  6. 6.

    Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

    Article  Google Scholar 

  7. 7.

    Parzefall, M. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nat. Nanotech. 10, 1058–1063 (2015).

    Article  Google Scholar 

  8. 8.

    Bigourdan, F., Hugonin, J.-P., Marquier, F., Sauvan, C. & Greffet, J.-J. Nanoantenna for electrical generation of surface plasmon polaritons. Phys. Rev. Lett. 116, 106803 (2016).

    Article  Google Scholar 

  9. 9.

    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    Article  Google Scholar 

  10. 10.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015).

    Article  Google Scholar 

  11. 11.

    Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotech. 10, 770–774 (2015).

    Article  Google Scholar 

  12. 12.

    Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotech. 8, 247–251 (2013).

    Article  Google Scholar 

  13. 13.

    Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  Google Scholar 

  14. 14.

    Christopher, P., Xin, H. L. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  Google Scholar 

  15. 15.

    Kumar, A., Kumar, S., Rhim, W.-K., Kim, G.-H. & Nam, J.-M. Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures. J. Am. Chem. Soc. 136, 16317–16325 (2014).

    Article  Google Scholar 

  16. 16.

    Zhai, Y. M. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in a plasmon-driven synthesis. Nat. Mater. 15, 889–895 (2016).

    Article  Google Scholar 

  17. 17.

    Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 701–704 (2011).

    Article  Google Scholar 

  18. 18.

    Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Article  Google Scholar 

  19. 19.

    Lock, D., Rusimova, K. R., Pan, T. L., Palmer, R. E. & Sloan, P. A. Atomically resolved real-space imaging of hot electron dynamics. Nat. Commun. 6, 8365 (2015).

    Article  Google Scholar 

  20. 20.

    Albrecht, T. Electrochemical tunnelling sensors and their potential applications. Nat. Commun. 3, 829 (2012).

    Article  Google Scholar 

  21. 21.

    Wang, D. D. et al. Tuning the tunneling rate and dielectric response of SAM-based junctions via a single polarizable atom. Adv. Mater. 27, 6689–6695 (2015).

    Article  Google Scholar 

  22. 22.

    Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009).

    Article  Google Scholar 

  23. 23.

    Nasir, M. E., Dickson, W., Wurtz, G. A., Wardley, W. P. & Zayats, A. V. Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials. Adv. Mater. 26, 3532–3537 (2014).

    Article  Google Scholar 

  24. 24.

    Yakovlev, V. V. et al. Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials. Adv. Mater. 25, 2351–2356 (2013).

    Article  Google Scholar 

  25. 25.

    Atkinson, R. et al. Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys. Rev. B 73, 235402 (2006).

    Article  Google Scholar 

  26. 26.

    Vasilantonakis, N., Nasir, M. E., Dickson, W., Wurtz, G. A. & Zayats, A. V. Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Lasers Photon. Rev. 9, 345–353 (2015).

    Article  Google Scholar 

  27. 27.

    Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  Google Scholar 

  28. 28.

    Johansson, P. Light emission from a scanning tunneling microscopy: fully retarded calculation. Phys. Rev. B 58, 10823–10834 (1998).

    Article  Google Scholar 

  29. 29.

    Downes, A., Taylor, M. E. & Welland, M. E. Two-sphere model of photon emission from the scanning tunneling microscope. Phys. Rev. B 57, 6706–6714 (1998).

    Article  Google Scholar 

  30. 30.

    Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article  Google Scholar 

  31. 31.

    Zhao, L. –B. et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J. Phys. Chem. Lett. 5, 1259–1266 (2014).

    Article  Google Scholar 

  32. 32.

    Hahn, J. R., Jang, S. H., Kim, K. W. & Son, S. B. Hot carrier-selective chemical reactions on Ag(110). J. Chem. Phys. 139, 074707 (2013).

    Article  Google Scholar 

  33. 33.

    Canning, N. D. S., Outka, D. & Madix, R. J. The absorption of oxygen on gold. Surf. Sci. 141, 240–254 (1984).

    Article  Google Scholar 

  34. 34.

    Huang, Y.-F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53, 2353–2357 (2014).

    Article  Google Scholar 

  35. 35.

    Huang, Y.-F., Zhu, H.-P., Liu, G.-K., Ren, B. & Tian, Z.-Q. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010).

    Article  Google Scholar 

  36. 36.

    Zhao, L.-B. et al. Surface plasmon catalytic aerobic oxidation of aromatic amines in metal/molecule/metal junctions. J. Phys. Chem. C 120, 944–955 (2016).

    Article  Google Scholar 

  37. 37.

    Yalon, E., Riess, I. & Ritter, D. Heat dissipation in resistive switching devices: comparison of thermal simulations and experimental results. IEEE Trans. Electron. Devices 61, 1137–1144 (2014).

    Article  Google Scholar 

  38. 38.

    Davis, M. E. & Davis, R. J. Fundamentals of Chemical Reaction Engineering (McGraw Hill, New York, 2003).

    Google Scholar 

  39. 39.

    Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

    Article  Google Scholar 

  40. 40.

    Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    Article  Google Scholar 

  41. 41.

    Sil, D. et al. Seeing is believing: hot electron based gold nanoplasmonic optical hydrogen sensor. ACS Nano 8, 7755–7762 (2014).

    Article  Google Scholar 

  42. 42.

    Pfisterer, J. H. K., Liang, Y. C., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).

    Article  Google Scholar 

  43. 43.

    Chalabi, H., Schoen, D. & Brongersma, M. L. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014).

    Article  Google Scholar 

  44. 44.

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399–410 (2013).

    Article  Google Scholar 

  45. 45.

    Rendell, R. W. & Scalapino, D. J. Surface plasmons confined by microstructures on tunnel junctions. Phys. Rev. B 24, 3276–3294 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded in part by the Engineering and Physical Sciences Research Council (UK) and the European Research Council iPLASMM project (321268). A.V.Z. acknowledges support from the Royal Society and the Wolfson Foundation. The authors thank W. P. Wardley for helpful discussion.

Author information

Affiliations

Authors

Contributions

A.V.Z. and P.W. conceived the study. P.W. constructed the experiment, performed the measurement and analysed the data. M.E.N. and W.D. fabricated the plasmonic nanorod metamaterials. A.V.K. performed numerical simulations. All the authors discussed the results and co-wrote the paper.

Corresponding authors

Correspondence to Pan Wang or Anatoly V. Zayats.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Krasavin, A.V., Nasir, M.E. et al. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nature Nanotech 13, 159–164 (2018). https://doi.org/10.1038/s41565-017-0017-7

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research