Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermoelectric spin voltage in graphene


In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents1,2. Amongst the most intriguing phenomena is the spin Seebeck effect3,4,5, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect6,7,8. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport9,10,11, energy-dependent carrier mobility and unique density of states12,13. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current14,15,16,17. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Thermoelectric spin voltage.
Fig. 2: Device characteristics.
Fig. 3: Thermoelectric spin voltage detection.
Fig. 4: Modelling and roles of Seebeck coefficient and the spin accumulation.


  1. Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).

    Article  Google Scholar 

  2. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  Google Scholar 

  3. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  Google Scholar 

  4. Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    Article  Google Scholar 

  5. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).

    Article  Google Scholar 

  6. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  Google Scholar 

  7. Saitoh, E., Ueda, M. & Miyajima, H. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  8. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

    Article  Google Scholar 

  9. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  Google Scholar 

  10. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    Article  Google Scholar 

  11. Roche, S. & Valenzuela, S. O. Graphene spintronics: puzzling controversies and challenges for spin manipulation. J. Phys. D. Appl. Phys. 47, 094011 (2014).

    Article  Google Scholar 

  12. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  13. Vera-Marun, I. J., Ranjan, V. & van Wees, B. J. Nonlinear detection of spin currents in graphene with non-magnetic electrodes. Nat. Phys. 8, 313–316 (2012).

    Article  Google Scholar 

  14. Berciaud, S. et al. Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104, 227401 (2010).

    Article  Google Scholar 

  15. Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    Article  Google Scholar 

  16. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2012).

    Article  Google Scholar 

  17. Sierra, J. F., Neumann, I., Costache, M. V. & Valenzuela, S. O. Hot-carrier Seebeck effect: Diffusion and remote detection of hot carriers in graphene. Nano. Lett. 15, 4000–4005 (2015).

    Article  Google Scholar 

  18. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  19. Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article  Google Scholar 

  20. Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  Google Scholar 

  21. Valenzuela, S. O. Nonlocal spin detection, spin accumulation and the spin Hall effect. Int. J. Mod. Phys. B 23, 2413–2438 (2009).

    Article  Google Scholar 

  22. Slachter, A., Bakker, F. L., Adam, J.-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879–882 (2010).

    Article  Google Scholar 

  23. Erekhinsky, M., Casanova, F., Schuller, I. K. & Sharoni, Q. Spin-dependent Seebeck effect in non-local spin valve devices. Appl. Phys. Lett. 100, 212401 (2012).

    Article  Google Scholar 

  24. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  Google Scholar 

  25. Dejene, F. K., Flipse, J., Bauer, G. E. W. & van Wees, B. J. Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves. Nat. Phys. 9, 636–639 (2012).

    Article  Google Scholar 

  26. Han, W. et al. Electron–hole asymmetry of spin injection and transport in single-layer graphene. Phys. Rev. Lett. 102, 137205 (2009).

    Article  Google Scholar 

  27. Neumann, I. Electronic Spin Transport and Thermoelectric Effects in Graphene. PhD thesis, Univ. Autònoma de Barcelona (2014).

  28. Gurram, M., Omar, S. & van Wees, B. J. Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructure. Nat. Commun. 8, 248 (2017).

    Article  Google Scholar 

  29. Ingla-Aynés, J., Meijerink, R. J. & van Wees, B. J. Eighty-eight percent directional guiding of spin currents with 90 μm relaxation length in bilayer graphene using carrier drift. Nano. Lett. 16, 4825–4830 (2016).

    Article  Google Scholar 

  30. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  Google Scholar 

Download references


We thank D. Torres for help in designing Fig. 1. This research was partially supported by the European Research Council under grant agreement no. 306652 SPINBOUND, by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 696656 (Graphene Flagship), by the Spanish Ministry of Economy and Competitiveness, MINECO (under contracts no. MAT2013-46785-P, no. MAT2016-75952-R and Severo Ochoa no. SEV-2013-0295), and by the CERCA Programme and the Secretariat for Universities and Research, Knowledge Department of the Generalitat de Catalunya 2014 SGR 56. J.F.S. and M.V.C. acknowledge support from MINECO Juan de la Cierva and Ramón y Cajal programmes, respectively, and J.C. from Generalitat de Catalunya, Beatriu de Pinos programme.

Author information

Authors and Affiliations



J.F.S., I.N. and S.O.V. planned the measurements. J.F.S. fabricated the samples and performed the experiments. J.C., B.R. and M.V.C. provided support for the device fabrication and M.V.C. for the measurements. J.F.S. and S.O.V. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript. S.O.V supervised the work.

Corresponding authors

Correspondence to Juan F. Sierra or Sergio O. Valenzuela.

Ethics declarations

Competing interests

The authors have no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Text and Figures 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sierra, J.F., Neumann, I., Cuppens, J. et al. Thermoelectric spin voltage in graphene. Nature Nanotech 13, 107–111 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research