Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%


The isolation of qubits from noise sources, such as surrounding nuclear spins and spin–electric susceptibility1,2,3,4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5,6,7. Still, a sizeable spin–electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin–spin manipulations8,9,10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin–electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Quantum-dot device with extrinsic spin–electric-coupling fields.
Fig. 2: Longitudinal spin–electric coupling characterization.
Fig. 3: Phase coherence and a spin echo.
Fig. 4: Dynamical decoupling and noise spectral density.
Fig. 5: Gate fidelity benchmark.


  1. 1.

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article  Google Scholar 

  2. 2.

    Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotech. 9, 986–991 (2014).

    Article  Google Scholar 

  3. 3.

    Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    Article  Google Scholar 

  4. 4.

    Reed, M. D. et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett. 116, 110402 (2016).

    Article  Google Scholar 

  5. 5.

    Bermeister, A., Keith, D. & Culcer, D. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits. Appl. Phys. Lett. 105, 192102 (2014).

    Article  Google Scholar 

  6. 6.

    Huang, P. & Hu, X. Electron spin relaxation due to charge noise. Phys. Rev. B 89, 195302 (2014).

    Article  Google Scholar 

  7. 7.

    Paladino, E., Galperin, Y., Falci, G. & Altshuler, B. L. 1/ f noise: implications for solid-state quantum information. Rev. Mod. Phys. 86, 361–418 (2014).

    Article  Google Scholar 

  8. 8.

    Tokura, Y., Van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

    Article  Google Scholar 

  9. 9.

    Trif, M., Golovach, V. N. & Loss, D. Spin dynamics in InAs nanowire quantum dots coupled to a transmission line. Phys. Rev. B 77, 045434 (2008).

    Article  Google Scholar 

  10. 10.

    Hu, X., Liu, Y. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

    Article  Google Scholar 

  11. 11.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotech. 9, 981–985 (2014).

    Article  Google Scholar 

  12. 12.

    Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).

    Article  Google Scholar 

  13. 13.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    Article  Google Scholar 

  14. 14.

    Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  Google Scholar 

  15. 15.

    Pioro-Ladrière, M. et al. Electrically driven single electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).

    Article  Google Scholar 

  16. 16.

    Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  Google Scholar 

  17. 17.

    Van Den Berg, J. W. G. et al. Fast spin-orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013).

    Article  Google Scholar 

  18. 18.

    Laird, E. A., Pei, F. & Kouwenhoven, L. P. A valley-spin qubit in a carbon nanotube. Nat. Nanotech. 8, 565–568 (2013).

    Article  Google Scholar 

  19. 19.

    Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotech. 9, 666–670 (2014).

    Article  Google Scholar 

  20. 20.

    Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).

    Article  Google Scholar 

  21. 21.

    Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    Article  Google Scholar 

  22. 22.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  Google Scholar 

  23. 23.

    Yoneda, J. et al. Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014).

    Article  Google Scholar 

  24. 24.

    Yoneda, J. et al. Robust micromagnet design for fast electrical manipulations of single spins in quantum dots. Appl. Phys. Express 8, 084401 (2015).

    Article  Google Scholar 

  25. 25.

    Veldhorst, M. et al. Spin-orbit coupling and operation of multivalley spin qubits. Phys. Rev. B 92, 201401(R) (2015).

    Article  Google Scholar 

  26. 26.

    Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  27. 27.

    Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

    Article  Google Scholar 

  28. 28.

    Delbecq, M. R. et al. Quantum dephasing in a gated GaAs triple quantum dot due to nonergodic noise. Phys. Rev. Lett. 116, 046802 (2016).

    Article  Google Scholar 

  29. 29.

    Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter 27, 154205 (2015).

    Article  Google Scholar 

  30. 30.

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    Article  Google Scholar 

  31. 31.

    Kelly, J. et al. Optimal quantum control using randomized benchmarking. Phys. Rev. Lett. 112, 240504 (2014).

    Article  Google Scholar 

  32. 32.

    Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article  Google Scholar 

  33. 33.

    Borselli, M. G. et al. Measurement of valley splitting in high-symmetry Si/SiGe quantum dots. Appl. Phys. Lett. 98, 123118 (2011).

    Article  Google Scholar 

Download references


We thank the Microwave Research Group in Caltech for technical support. This work was supported financially by Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST) (JPMJCR15N2, JPMJCR1675) and the ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). J.Y., T.N. and T.O. acknowledge support from RIKEN Incentive Research Projects. T.O. acknowledges support from Precursory Research for Embryonic Science and Technology (PRESTO) (JPMJPR16N3), JSPS KAKENHI grant numbers JP16H00817 and JP17H05187, Advanced Technology Institute Research Grant, the Murata Science Foundation Research Grant, Izumi Science and Technology Foundation Research Grant, TEPCO Memorial Foundation Research Grant, The Thermal and Electric Energy Technology Foundation Research Grant, The Telecommunications Advancement Foundation Research Grant, Futaba Electronics Memorial Foundation Research Grant and Foundation for Promotion of Material Science and Technology of Japan (MST) Foundation Research Grant. T.K. acknowledges support from Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI) grant numbers JP26709023 and JP16F16806. K.M.I. acknowledges support from KAKENHI (S) grant number JP26220602 and JSPS Core-to-Core Program. S.T. acknowledges support by JSPS KAKENHI grant numbers JP26220710 and JP16H02204.

Author information




J.Y. performed the bulk of measurement and data analysis. K.T. fabricated the device with the help of T.O. and T.H. Y.H., N.U. and K.M.I. supplied the isotopically enriched Si/SiGe heterostructure. J.Y. wrote the manuscript with inputs from other authors. M.R.D., G.A., T.N., T.K. and S.O. contributed to device fabrication and measurement. S.T. supervised the project.

Corresponding authors

Correspondence to Jun Yoneda or Seigo Tarucha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Text and Figures 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoneda, J., Takeda, K., Otsuka, T. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotech 13, 102–106 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research