A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

  • Nature Nanotechnologyvolume 13pages102106 (2018)
  • doi:10.1038/s41565-017-0014-x
  • Download Citation
Published online:


The isolation of qubits from noise sources, such as surrounding nuclear spins and spin–electric susceptibility1,2,3,4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5,6,7. Still, a sizeable spin–electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin–spin manipulations8,9,10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin–electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  • Subscribe to Nature Nanotechnology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

  2. 2.

    Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotech. 9, 986–991 (2014).

  3. 3.

    Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

  4. 4.

    Reed, M. D. et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett. 116, 110402 (2016).

  5. 5.

    Bermeister, A., Keith, D. & Culcer, D. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits. Appl. Phys. Lett. 105, 192102 (2014).

  6. 6.

    Huang, P. & Hu, X. Electron spin relaxation due to charge noise. Phys. Rev. B 89, 195302 (2014).

  7. 7.

    Paladino, E., Galperin, Y., Falci, G. & Altshuler, B. L. 1/ f noise: implications for solid-state quantum information. Rev. Mod. Phys. 86, 361–418 (2014).

  8. 8.

    Tokura, Y., Van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

  9. 9.

    Trif, M., Golovach, V. N. & Loss, D. Spin dynamics in InAs nanowire quantum dots coupled to a transmission line. Phys. Rev. B 77, 045434 (2008).

  10. 10.

    Hu, X., Liu, Y. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

  11. 11.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotech. 9, 981–985 (2014).

  12. 12.

    Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).

  13. 13.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

  14. 14.

    Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

  15. 15.

    Pioro-Ladrière, M. et al. Electrically driven single electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).

  16. 16.

    Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

  17. 17.

    Van Den Berg, J. W. G. et al. Fast spin-orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013).

  18. 18.

    Laird, E. A., Pei, F. & Kouwenhoven, L. P. A valley-spin qubit in a carbon nanotube. Nat. Nanotech. 8, 565–568 (2013).

  19. 19.

    Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotech. 9, 666–670 (2014).

  20. 20.

    Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).

  21. 21.

    Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

  22. 22.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

  23. 23.

    Yoneda, J. et al. Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014).

  24. 24.

    Yoneda, J. et al. Robust micromagnet design for fast electrical manipulations of single spins in quantum dots. Appl. Phys. Express 8, 084401 (2015).

  25. 25.

    Veldhorst, M. et al. Spin-orbit coupling and operation of multivalley spin qubits. Phys. Rev. B 92, 201401(R) (2015).

  26. 26.

    Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

  27. 27.

    Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

  28. 28.

    Delbecq, M. R. et al. Quantum dephasing in a gated GaAs triple quantum dot due to nonergodic noise. Phys. Rev. Lett. 116, 046802 (2016).

  29. 29.

    Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter 27, 154205 (2015).

  30. 30.

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

  31. 31.

    Kelly, J. et al. Optimal quantum control using randomized benchmarking. Phys. Rev. Lett. 112, 240504 (2014).

  32. 32.

    Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

  33. 33.

    Borselli, M. G. et al. Measurement of valley splitting in high-symmetry Si/SiGe quantum dots. Appl. Phys. Lett. 98, 123118 (2011).

Download references


We thank the Microwave Research Group in Caltech for technical support. This work was supported financially by Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST) (JPMJCR15N2, JPMJCR1675) and the ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). J.Y., T.N. and T.O. acknowledge support from RIKEN Incentive Research Projects. T.O. acknowledges support from Precursory Research for Embryonic Science and Technology (PRESTO) (JPMJPR16N3), JSPS KAKENHI grant numbers JP16H00817 and JP17H05187, Advanced Technology Institute Research Grant, the Murata Science Foundation Research Grant, Izumi Science and Technology Foundation Research Grant, TEPCO Memorial Foundation Research Grant, The Thermal and Electric Energy Technology Foundation Research Grant, The Telecommunications Advancement Foundation Research Grant, Futaba Electronics Memorial Foundation Research Grant and Foundation for Promotion of Material Science and Technology of Japan (MST) Foundation Research Grant. T.K. acknowledges support from Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI) grant numbers JP26709023 and JP16F16806. K.M.I. acknowledges support from KAKENHI (S) grant number JP26220602 and JSPS Core-to-Core Program. S.T. acknowledges support by JSPS KAKENHI grant numbers JP26220710 and JP16H02204.

Author information


  1. Center for Emergent Matter Science, RIKEN, Saitama, Japan

    • Jun Yoneda
    • , Kenta Takeda
    • , Tomohiro Otsuka
    • , Takashi Nakajima
    • , Matthieu R. Delbecq
    • , Giles Allison
    •  & Seigo Tarucha
  2. Department of Applied Physics, University of Tokyo, Tokyo, Japan

    • Jun Yoneda
    • , Kenta Takeda
    • , Tomohiro Otsuka
    • , Takashi Nakajima
    • , Matthieu R. Delbecq
    •  & Seigo Tarucha
  3. JST, PRESTO, Saitama, Japan

    • Tomohiro Otsuka
  4. Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan

    • Takumu Honda
    • , Tetsuo Kodera
    •  & Shunri Oda
  5. Institute of Industrial Science, University of Tokyo, Tokyo, Japan

    • Yusuke Hoshi
  6. Graduate School of Engineering, Nagoya University, Nagoya, Japan

    • Noritaka Usami
  7. Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan

    • Kohei M. Itoh


  1. Search for Jun Yoneda in:

  2. Search for Kenta Takeda in:

  3. Search for Tomohiro Otsuka in:

  4. Search for Takashi Nakajima in:

  5. Search for Matthieu R. Delbecq in:

  6. Search for Giles Allison in:

  7. Search for Takumu Honda in:

  8. Search for Tetsuo Kodera in:

  9. Search for Shunri Oda in:

  10. Search for Yusuke Hoshi in:

  11. Search for Noritaka Usami in:

  12. Search for Kohei M. Itoh in:

  13. Search for Seigo Tarucha in:


J.Y. performed the bulk of measurement and data analysis. K.T. fabricated the device with the help of T.O. and T.H. Y.H., N.U. and K.M.I. supplied the isotopically enriched Si/SiGe heterostructure. J.Y. wrote the manuscript with inputs from other authors. M.R.D., G.A., T.N., T.K. and S.O. contributed to device fabrication and measurement. S.T. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jun Yoneda or Seigo Tarucha.

Supplementary information

  1. Supplementary information

    Supplementary Text and Figures 1–3