Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1,2,3,4,5,6,7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8,9,10,11,12,13,14,15,16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17,18,19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  2. 2.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

  3. 3.

    Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

  4. 4.

    Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

  5. 5.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in Moiré superlattices. Nature 497, 598–602 (2013).

  6. 6.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

  7. 7.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  8. 8.

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

  9. 9.

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

  10. 10.

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 9, 780–793 (2014).

  11. 11.

    Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).

  12. 12.

    Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

  13. 13.

    Mics, Z. et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Commun. 6, 7655 (2015).

  14. 14.

    Kim, Y. D. et al. Bright visible light emission from graphene. Nat. Nanotech. 10, 676–681 (2015).

  15. 15.

    Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotech. 11, 42–46 (2016).

  16. 16.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

  17. 17.

    Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

  18. 18.

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

  19. 19.

    Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, 1992 (2016).

  20. 20.

    Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

  21. 21.

    Song, J. C. W. et al. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

  22. 22.

    Kampfrath, T. et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005).

  23. 23.

    Mihnev, M. T. et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene. Nat. Commun. 7, 11617 (2016).

  24. 24.

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

  25. 25.

    Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

  26. 26.

    Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

  27. 27.

    Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

  28. 28.

    Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

  29. 29.

    Low, T. et al. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

  30. 30.

    Hamm, J. M. et al. Nonequilibrium plasmon emission drives ultrafast carrier relaxation dynamics in photoexcited graphene. Phys. Rev. B 93, 041408 (2016).

  31. 31.

    Principi, A. et al. Super-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).

  32. 32.

    Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

  33. 33.

    Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

  34. 34.

    Mihnev, M. T. et al. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene. Nat. Commun. 6, 8105 (2015).

  35. 35.

    Tomadin, A. et al. Accessing phonon polaritons in hyperbolic crystals by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 115, 087401 (2015).

  36. 36.

    Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid. (Cambridge Univ. Press, Cambridge, 2005).

  37. 37.

    Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotech. https://doi.org/10.1038/s41565-017-0007-9 2017.

  38. 38.

    Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014).

  39. 39.

    Jadidi, M. M. et al. Infrared nonlinear photomixing spectroscopy of graphene thermal relaxation. Phys. Rev. Lett. 117, 257401 (2016).

  40. 40.

    Hwang, E. J., Rossi, E. & Das Sarma, S. Theory of thermopower in two-dimensional graphene. Phys. Rev. B 80, 235415 (2009).

  41. 41.

    Wunsch, B. et al. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

  42. 42.

    Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

  43. 43.

    Principi, A., Polini, M. & Vignale, G. Linear response of doped graphene sheets to vector potentials. Phys. Rev. B 80, 075418 (2009).

  44. 44.

    Kotov, V. N. et al. Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067 (2012).

  45. 45.

    Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotech. 2, 31–35 (2017).

Download references


The authors thank A. Tomadin and F. Vialla for discussions. This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 696656, Graphene Flagship, Fondazione Istituto Italiano di Tecnologia, the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0522), Fundacio Cellex Barcelona, Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P) and the Government of Catalonia through an SGR grant (2014-SGR-1535), ERC StG CarbonLight (307806), ERC grant Hetero2D, and EPSRC grants EP/K01711X/1, EP/K017144/1, EP/N010345/1 and EP/L016087/1. K.-J.T. acknowledges support from a Mineco Young Investigator Grant (FIS2014-59639-JIN). A.P. acknowledges support from ERC Advanced Grant 338957 FEMTO/NANO and from the NWO via the Spinoza Prize. M.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (PGSD3-426325-2012). D.T. acknowledges financial support from the European Union Marie Curie Program (Career Integration grant no. 334324 LIGHTER) and the Max Planck Society. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI (grant nos. JP26248061, JP15K21722 and JP25106006).

Author information

Author notes

  1. Klaas-Jan Tielrooij and Niels Hesp are equally contributing authors.


  1. ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain

    • Klaas-Jan Tielrooij
    • , Niels C. H. Hesp
    • , Mark B. Lundeberg
    • , Mathieu Massicotte
    • , Peter Schmidt
    • , Diana Davydovskaya
    •  & Frank H. L. Koppens
  2. Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands

    • Alessandro Principi
  3. School of Physics & Astronomy, University of Manchester, Manchester, UK

    • Alessandro Principi
  4. IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Milano, Italy

    • Eva A. A. Pogna
    •  & Giulio Cerullo
  5. JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen, Germany

    • Luca Banszerus
    •  & Christoph Stampfer
  6. Max Planck Institute for Polymer Research, Mainz, Germany

    • Zoltán Mics
    • , Mischa Bonn
    •  & Dmitry Turchinovich
  7. Cambridge Graphene Centre, University of Cambridge, Cambridge, UK

    • David G. Purdie
    • , Ilya Goykhman
    • , Giancarlo Soavi
    •  & Andrea C. Ferrari
  8. National Institute for Material Science, Tsukuba, Japan

    • Antonio Lombardo
    • , Kenji Watanabe
    •  & Takashi Taniguchi
  9. Istituto Italiano di Tecnologia, Graphene Labs, Genova, Italy

    • Marco Polini
  10. ICREA – Institució Catalana de Reçerca i Estudis Avancats, Barcelona, Spain

    • Frank H. L. Koppens
  11. Fakultät für Physik, Universität Duisburg-Essen, Duisburg, Germany

    • Dmitry Turchinovich


  1. Search for Klaas-Jan Tielrooij in:

  2. Search for Niels C. H. Hesp in:

  3. Search for Alessandro Principi in:

  4. Search for Mark B. Lundeberg in:

  5. Search for Eva A. A. Pogna in:

  6. Search for Luca Banszerus in:

  7. Search for Zoltán Mics in:

  8. Search for Mathieu Massicotte in:

  9. Search for Peter Schmidt in:

  10. Search for Diana Davydovskaya in:

  11. Search for David G. Purdie in:

  12. Search for Ilya Goykhman in:

  13. Search for Giancarlo Soavi in:

  14. Search for Antonio Lombardo in:

  15. Search for Kenji Watanabe in:

  16. Search for Takashi Taniguchi in:

  17. Search for Mischa Bonn in:

  18. Search for Dmitry Turchinovich in:

  19. Search for Christoph Stampfer in:

  20. Search for Andrea C. Ferrari in:

  21. Search for Giulio Cerullo in:

  22. Search for Marco Polini in:

  23. Search for Frank H. L. Koppens in:


K.-J.T. and F.H.L.K. conceived the experiment. K.-J.T. and N.C.H.H. performed the time-resolved photocurrent experiments and performed data analysis. A.P., M.P. and M.B.L. developed the theory and performed calculations on hyperbolic cooling. E.A.A.P. performed the optical pump–probe spectroscopy measurements. Z.M. and K.-J.T. performed the optical pump–THz probe spectroscopy measurements. N.C.H.H., M.B.L., L.B., M.M., P.S., D.D., D.G.P., I.G., G.S. and A.L. fabricated devices. K.W. and T.T. contributed hBN material. M.B., D.T., C.S., A.C.F., G.C., M.P. and F.H.L.K. supervised the work and discussed the results. K.-J.T., F.H.L.K. and M.P. wrote the paper, with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Klaas-Jan Tielrooij or Frank H. L. Koppens.

Electronic supplementary material

About this article

Publication history




Issue Date



Further reading