The engineering of cooling mechanisms is a bottleneck in nanoelectronics. Thermal exchanges in diffusive graphene are mostly driven by defect-assisted acoustic phonon scattering, but the case of high-mobility graphene on hexagonal boron nitride (hBN) is radically different, with a prominent contribution of remote phonons from the substrate. Bilayer graphene on a hBN transistor with a local gate is driven in a regime where almost perfect current saturation is achieved by compensation of the decrease in the carrier density and Zener–Klein tunnelling (ZKT) at high bias. Using noise thermometry, we show that the ZKT triggers a new cooling pathway due to the emission of hyperbolic phonon polaritons in hBN by out-of-equilibrium electron–hole pairs beyond the super-Planckian regime. The combination of ZKT transport and hyperbolic phonon polariton cooling renders graphene on BN transistors a valuable nanotechnology for power devices and RF electronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

  2. 2.

    Graham, M., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

  3. 3.

    Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

  4. 4.

    Laitinen, A. et al. Electron phonon coupling in suspended graphene: supercollisions by ripples. Nano Lett. 14, 3009–3013 (2014).

  5. 5.

    Mihnev, M. T. et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene. Nat. Commun. 7, 11617 (2016).

  6. 6.

    Gao, B. et al. Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy. Nano Lett. 11, 3184–3189 (2011).

  7. 7.

    Laitinen, A. et al. Electron–optical phonon coupling in suspended graphene bilayer. Phys. Rev. B 91, 121414 (R) (2014).

  8. 8.

    Mihnev, M. T. et al. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene. Nat. Commun. 6, 8105 (2015).

  9. 9.

    Low, T., Perebeinos, V., Kim, R., Freitag, M. & Avouris, P. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

  10. 10.

    Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

  11. 11.

    Barreiro, A., Lazzeri, M., Moser, J., Mauri, F. & Bachtold, A. Transport properties of graphene in the high-current limit. Phys. Rev. Lett. 103, 076601 (2009).

  12. 12.

    DaSilva, A. M., Zou, K., Jain, J. K. & Zhu, J. Mechanism for current saturation and energy dissipation in graphene transistors. Phys. Rev. Lett. 104, 236601 (2010).

  13. 13.

    Meric, M. et al. Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat. Nanotech. 3, 654–659 (2008).

  14. 14.

    Vandecasteele, N., Barreiro, A., Lazzeri, M., Bachtold, A. & Mauri, F. Current–voltage characteristics of graphene devices: interplay between Zener–Klein tunneling and defects. Phys. Rev. B 82, 045416 (2010).

  15. 15.

    Kane, G., Lazzeri, M. & Mauri, F. High-field transport in graphene: the impact of Zener tunneling. J. Phys. Condens. Matter 27, 164205 (2015).

  16. 16.

    Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. App. Phys. Lett. 101, 131106 (2012).

  17. 17.

    Biehs, S.-A., Tschikin, M. & Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012).

  18. 18.

    Biehs, S.-A., Tschikin, M., Messina, R. & Ben-Abdallah, P. Super-Planckian far-zone thermal emission from asymmetric hyperbolic metamaterials. App. Phys. Lett. 105, 161902 (2014).

  19. 19.

    Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotech. 10, 682–686 (2015).

  20. 20.

    Kumar, A., Low, T., Fung, K. H., Avouris, P. & Fang, N. X. Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett. 15, 3172–3180 (2015).

  21. 21.

    Giles, A. J. et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016).

  22. 22.

    Principi, A. et al. Super-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).

  23. 23.

    Wilmart, Q. et al. Contact gating at GHz frequency in graphene. Sci. Rep. 6, 21085 (2016).

  24. 24.

    Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano Lett. 9, 1883–1888 (2009).

  25. 25.

    Perebeinos, V. & Avouris, P. Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010).

  26. 26.

    Meric, N. et al. Graphene field-effect transistors based on boron–nitride dielectrics. Proc. IEEE 101, 1609–1619 (2013).

  27. 27.

    Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

  28. 28.

    Wu, F. et al. Shot noise with interaction effects in single-walled carbon nanotubes. Phys. Rev. Lett. 99, 156803 (2007).

  29. 29.

    Chaste, J. et al. Thermal shot noise in top-gated single carbon nanotube field effect transistors. Appl. Phys. Lett. 96, 192103 (2010).

  30. 30.

    Santavicca, D. F., Chudow, J. D., Prober, D. E., Purewal, M. S. & Kim, P. Energy loss of the electron system in individual single-walled carbon nanotubes. Nano Lett. 10, 4538–4543 (2010).

  31. 31.

    Voisin, C. & Plaçais, B. Hot carriers in graphene. J. Phys. Condens. Matter 27, 160301 (2015).

  32. 32.

    Brunel, D. et al. Onset of optical-phonon cooling in multilayer graphene revealed by RF noise and black-body radiation thermometries. J. Phys. Condens. Matter 27, 164208 (2015).

  33. 33.

    Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

  34. 34.

    McKitterick, C. B., Prober, D. E. & Rooks, M. J. Electron–phonon cooling in large monolayer graphene devices. Phys. Rev. B 93, 075410 (2016).

  35. 35.

    Fong, K. C. et al. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).

  36. 36.

    Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

  37. 37.

    Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

  38. 38.

    Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

  39. 39.

    Bourlon, B. et al. Geometrical dependence of high-bias current in multiwalled carbon nanotubes. Phys. Rev. Lett. 92, 026804 (2004).

  40. 40.

    Biehs, S.-A., Rousseau, E. & Greffet, J.-J. Electronic cooling in graphene. Phys. Rev. Lett. 105, 234301 (2010).

  41. 41.

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

  42. 42.

    Kadi, F., Winzer, T., Knorr, A. & Malic, E. Impact of doping on the carrier dynamics in graphene. Sci. Rep. 5, 16841 (2015).

  43. 43.

    Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nat. Nanotech. https://arXiv:1702.03766v1 (2017).

  44. 44.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

Download references


The research leading to these results received partial funding from the European Union under grant no. 696656 (Graphene Flagship) and from the French ANR under grant ANR-14-CE08-018-05 ‘GoBN’. G.Z. acknowledges financial support from the National Basic Research Program of China (973 Program) under grant no. 2013CB934500 and the National Science Foundation of China (NSFC) under grant no. 61325021.

Author information


  1. Laboratoire Pierre Aigrain, Département de physique de l’ENS, Ecole normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France

    • Wei Yang
    • , Simon Berthou
    • , Quentin Wilmart
    • , Anne Denis
    • , Michael Rosticher
    • , Gwendal Fève
    • , Jean-Marc Berroir
    • , Christophe Voisin
    • , Emmanuel Baudin
    •  & Bernard Plaçais
  2. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China

    • Xiaobo Lu
    •  & Guangyu Zhang
  3. Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan

    • Takashi Taniguchi
    •  & Kenji Watanabe


  1. Search for Wei Yang in:

  2. Search for Simon Berthou in:

  3. Search for Xiaobo Lu in:

  4. Search for Quentin Wilmart in:

  5. Search for Anne Denis in:

  6. Search for Michael Rosticher in:

  7. Search for Takashi Taniguchi in:

  8. Search for Kenji Watanabe in:

  9. Search for Gwendal Fève in:

  10. Search for Jean-Marc Berroir in:

  11. Search for Guangyu Zhang in:

  12. Search for Christophe Voisin in:

  13. Search for Emmanuel Baudin in:

  14. Search for Bernard Plaçais in:


W.Y., E.B., C.V. and B.P. conceived the experiment and developed the models. W.Y. and S.B. conducted the measurements. A.D. designed the sample holder. W.Y., X.L., M.R., T.T., K.W., Q.W. and G.Z. participated in sample fabrication. W.Y., S.B., G.F., J.-M.B., E.B., C.V. and B.P. participated in data analysis. W.Y., E.B., C.V. and B.P. wrote the manuscript with contributions from the coauthors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Bernard Plaçais.

Electronic supplementary material

About this article

Publication history






Further reading