Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A graphene Zener–Klein transistor cooled by a hyperbolic substrate

Abstract

The engineering of cooling mechanisms is a bottleneck in nanoelectronics. Thermal exchanges in diffusive graphene are mostly driven by defect-assisted acoustic phonon scattering, but the case of high-mobility graphene on hexagonal boron nitride (hBN) is radically different, with a prominent contribution of remote phonons from the substrate. Bilayer graphene on a hBN transistor with a local gate is driven in a regime where almost perfect current saturation is achieved by compensation of the decrease in the carrier density and Zener–Klein tunnelling (ZKT) at high bias. Using noise thermometry, we show that the ZKT triggers a new cooling pathway due to the emission of hyperbolic phonon polaritons in hBN by out-of-equilibrium electron–hole pairs beyond the super-Planckian regime. The combination of ZKT transport and hyperbolic phonon polariton cooling renders graphene on BN transistors a valuable nanotechnology for power devices and RF electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bottom-gated bilayer graphene on hBN transistor (optical image in panel a, inset).
Fig. 2: Current and noise saturation in bottom-gated bilayer graphene on hBN ZKT transistor.
Fig. 3: Deviation from Wiedemann–Franz cooling.
Fig. 4: HPP emissivity analysis of the noise temperature–Joule power data shown in Fig. 3.

Similar content being viewed by others

References

  1. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  Google Scholar 

  2. Graham, M., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    Article  Google Scholar 

  3. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

    Article  Google Scholar 

  4. Laitinen, A. et al. Electron phonon coupling in suspended graphene: supercollisions by ripples. Nano Lett. 14, 3009–3013 (2014).

    Article  Google Scholar 

  5. Mihnev, M. T. et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene. Nat. Commun. 7, 11617 (2016).

    Article  Google Scholar 

  6. Gao, B. et al. Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy. Nano Lett. 11, 3184–3189 (2011).

    Google Scholar 

  7. Laitinen, A. et al. Electron–optical phonon coupling in suspended graphene bilayer. Phys. Rev. B 91, 121414 (R) (2014).

    Article  Google Scholar 

  8. Mihnev, M. T. et al. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene. Nat. Commun. 6, 8105 (2015).

    Article  Google Scholar 

  9. Low, T., Perebeinos, V., Kim, R., Freitag, M. & Avouris, P. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

    Article  Google Scholar 

  10. Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    Article  Google Scholar 

  11. Barreiro, A., Lazzeri, M., Moser, J., Mauri, F. & Bachtold, A. Transport properties of graphene in the high-current limit. Phys. Rev. Lett. 103, 076601 (2009).

    Article  Google Scholar 

  12. DaSilva, A. M., Zou, K., Jain, J. K. & Zhu, J. Mechanism for current saturation and energy dissipation in graphene transistors. Phys. Rev. Lett. 104, 236601 (2010).

    Article  Google Scholar 

  13. Meric, M. et al. Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat. Nanotech. 3, 654–659 (2008).

    Article  Google Scholar 

  14. Vandecasteele, N., Barreiro, A., Lazzeri, M., Bachtold, A. & Mauri, F. Current–voltage characteristics of graphene devices: interplay between Zener–Klein tunneling and defects. Phys. Rev. B 82, 045416 (2010).

    Article  Google Scholar 

  15. Kane, G., Lazzeri, M. & Mauri, F. High-field transport in graphene: the impact of Zener tunneling. J. Phys. Condens. Matter 27, 164205 (2015).

    Article  Google Scholar 

  16. Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. App. Phys. Lett. 101, 131106 (2012).

    Article  Google Scholar 

  17. Biehs, S.-A., Tschikin, M. & Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012).

    Article  Google Scholar 

  18. Biehs, S.-A., Tschikin, M., Messina, R. & Ben-Abdallah, P. Super-Planckian far-zone thermal emission from asymmetric hyperbolic metamaterials. App. Phys. Lett. 105, 161902 (2014).

    Article  Google Scholar 

  19. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotech. 10, 682–686 (2015).

    Article  Google Scholar 

  20. Kumar, A., Low, T., Fung, K. H., Avouris, P. & Fang, N. X. Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett. 15, 3172–3180 (2015).

    Google Scholar 

  21. Giles, A. J. et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016).

    Article  Google Scholar 

  22. Principi, A. et al. Super-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).

    Article  Google Scholar 

  23. Wilmart, Q. et al. Contact gating at GHz frequency in graphene. Sci. Rep. 6, 21085 (2016).

    Article  Google Scholar 

  24. Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano Lett. 9, 1883–1888 (2009).

    Article  Google Scholar 

  25. Perebeinos, V. & Avouris, P. Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010).

    Article  Google Scholar 

  26. Meric, N. et al. Graphene field-effect transistors based on boron–nitride dielectrics. Proc. IEEE 101, 1609–1619 (2013).

    Article  Google Scholar 

  27. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article  Google Scholar 

  28. Wu, F. et al. Shot noise with interaction effects in single-walled carbon nanotubes. Phys. Rev. Lett. 99, 156803 (2007).

    Article  Google Scholar 

  29. Chaste, J. et al. Thermal shot noise in top-gated single carbon nanotube field effect transistors. Appl. Phys. Lett. 96, 192103 (2010).

    Article  Google Scholar 

  30. Santavicca, D. F., Chudow, J. D., Prober, D. E., Purewal, M. S. & Kim, P. Energy loss of the electron system in individual single-walled carbon nanotubes. Nano Lett. 10, 4538–4543 (2010).

    Article  Google Scholar 

  31. Voisin, C. & Plaçais, B. Hot carriers in graphene. J. Phys. Condens. Matter 27, 160301 (2015).

    Article  Google Scholar 

  32. Brunel, D. et al. Onset of optical-phonon cooling in multilayer graphene revealed by RF noise and black-body radiation thermometries. J. Phys. Condens. Matter 27, 164208 (2015).

    Article  Google Scholar 

  33. Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    Article  Google Scholar 

  34. McKitterick, C. B., Prober, D. E. & Rooks, M. J. Electron–phonon cooling in large monolayer graphene devices. Phys. Rev. B 93, 075410 (2016).

    Article  Google Scholar 

  35. Fong, K. C. et al. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).

    Google Scholar 

  36. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article  Google Scholar 

  37. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  Google Scholar 

  38. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    Article  Google Scholar 

  39. Bourlon, B. et al. Geometrical dependence of high-bias current in multiwalled carbon nanotubes. Phys. Rev. Lett. 92, 026804 (2004).

    Article  Google Scholar 

  40. Biehs, S.-A., Rousseau, E. & Greffet, J.-J. Electronic cooling in graphene. Phys. Rev. Lett. 105, 234301 (2010).

    Article  Google Scholar 

  41. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article  Google Scholar 

  42. Kadi, F., Winzer, T., Knorr, A. & Malic, E. Impact of doping on the carrier dynamics in graphene. Sci. Rep. 5, 16841 (2015).

    Article  Google Scholar 

  43. Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nat. Nanotech. https://arXiv:1702.03766v1 (2017).

  44. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received partial funding from the European Union under grant no. 696656 (Graphene Flagship) and from the French ANR under grant ANR-14-CE08-018-05 ‘GoBN’. G.Z. acknowledges financial support from the National Basic Research Program of China (973 Program) under grant no. 2013CB934500 and the National Science Foundation of China (NSFC) under grant no. 61325021.

Author information

Authors and Affiliations

Authors

Contributions

W.Y., E.B., C.V. and B.P. conceived the experiment and developed the models. W.Y. and S.B. conducted the measurements. A.D. designed the sample holder. W.Y., X.L., M.R., T.T., K.W., Q.W. and G.Z. participated in sample fabrication. W.Y., S.B., G.F., J.-M.B., E.B., C.V. and B.P. participated in data analysis. W.Y., E.B., C.V. and B.P. wrote the manuscript with contributions from the coauthors.

Corresponding author

Correspondence to Bernard Plaçais.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Berthou, S., Lu, X. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nature Nanotech 13, 47–52 (2018). https://doi.org/10.1038/s41565-017-0007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-017-0007-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing