Article | Published:

Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

Nature Nanotechnologyvolume 13pages5964 (2018) | Download Citation


Excitons, Coulomb-bound electron–hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate ~6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip–sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  2. 2.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  3. 3.

    He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

  4. 4.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon 10, 216–226 (2016).

  5. 5.

    Basov, D., Fogler, M. & de Abajo, F. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

  6. 6.

    Tong, Q. et al. Topological mosaics in moire superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

  7. 7.

    Hao, K. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12, 677–682 (2016).

  8. 8.

    Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-vib transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

  9. 9.

    Kośmider, K., González, J. W. & Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013).

  10. 10.

    Echeverry, J., Urbaszek, B., Amand, T., Marie, X. & Gerber, I. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 121107 (2016).

  11. 11.

    Zhang, X.-X., You, Y., Zhao, S. Y. F. & Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 115, 257403 (2015).

  12. 12.

    Arora, A. et al. Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale 7, 10421–10429 (2015).

  13. 13.

    Koperski, M. et al. Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics 6, 1289–1308 (2017).

  14. 14.

    Slobodeniuk, A. & Basko, D. Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. 2D Mater 3, 035009 (2016).

  15. 15.

    Molas, M. et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater 4, 021003 (2017).

  16. 16.

    Zhang, X.-X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotech. 12, 883–888 (2017).

  17. 17.

    Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotech. 12, 856–860 (2017).

  18. 18.

    Wang, G. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett. 119, 047401 (2017).

  19. 19.

    Smoleński, T., Kazimierczuk, T., Goryca, M., Wojnar, P. & Kossacki, P. Mechanism and dynamics of biexciton formation from a long-lived dark exciton in a CdTe quantum dot. Phys. Rev. B 91, 155430 (2015).

  20. 20.

    Poem, E. et al. Accessing the dark exciton with light. Nat. Phys. 6, 993–997 (2010).

  21. 21.

    Combescot, M., Betbeder-Matibet, O. & Combescot, R. Bose–Einstein condensation in semiconductors: the key role of dark excitons. Phys. Rev. Lett. 99, 176403 (2007).

  22. 22.

    Nirmal, M. et al. Observation of the ‘dark exciton’ in CdSe quantum dots. Phys. Rev. Lett. 75, 3728 (1995).

  23. 23.

    Smoleński, T. et al. In-plane radiative recombination channel of a dark exciton in self-assembled quantum dots. Phys. Rev. B 86, 241305 (2012).

  24. 24.

    Kravtsov, V., Berweger, S., Atkin, J. M. & Raschke, M. B. Control of plasmon emission and dynamics at the transition from classical to quantum coupling. Nano Lett. 14, 5270–5275 (2014).

  25. 25.

    Park, K.-D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 2621–2627 (2016).

  26. 26.

    Wang, Z. et al. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nat. Commun. 7, 11283 (2016).

  27. 27.

    You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

  28. 28.

    Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

  29. 29.

    Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

  30. 30.

    Park, K.-D. et al. A new method of Q factor optimization by introducing two nodal wedges in a tuning-fork/fiber probe distance sensor. Rev. Sci. Instrum. 81, 093702 (2010).

  31. 31.

    Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C Solid State Phys. 17, 6039 (1984).

  32. 32.

    Ochoa, H. & Roldán, R. Spin-orbit-mediated spin relaxation in monolayer MoS2. Phys. Rev. B 87, 245421 (2013).

  33. 33.

    Akselrod, G. M. et al. Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

  34. 34.

    Rose, A. et al. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).

  35. 35.

    Crooker, S., Barrick, T., Hollingsworth, J. & Klimov, V. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

  36. 36.

    Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

  37. 37.

    Kleemann, M.-E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Preprint at (2017).

  38. 38.

    Jin, C. et al. Interlayer electron-phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 13, 127–131 (2017).

  39. 39.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

  40. 40.

    Karrai, K. & Grober, R. D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 66, 1842–1844 (1995).

Download references


The authors would like to thank M. D. Lukin for insightful discussions. K.-D.P., T.J. and M.B.R. acknowledge funding from the US Department of Energy, Office of Basic Sciences, Division of Material Sciences and Engineering, under award no. DE-SC0008807. G.C. and X.X. acknowledge support from NSF-EFRI-1433496. We also acknowledge support provided by the Center for Experiments on Quantum Materials (CEQM) of the University of Colorado.

Author information


  1. Department of Physics, University of Colorado, Boulder, CO, USA

    • Kyoung-Duck Park
    • , Tao Jiang
    •  & Markus B. Raschke
  2. Department of Chemistry, University of Colorado, Boulder, CO, USA

    • Kyoung-Duck Park
    • , Tao Jiang
    •  & Markus B. Raschke
  3. JILA, University of Colorado, Boulder, CO, USA

    • Kyoung-Duck Park
    • , Tao Jiang
    •  & Markus B. Raschke
  4. Center for Experiments on Quantum Materials, University of Colorado, Boulder, CO, USA

    • Kyoung-Duck Park
    • , Tao Jiang
    •  & Markus B. Raschke
  5. Department of Physics, University of Washington, Seattle, WA, USA

    • Genevieve Clark
    •  & Xiaodong Xu
  6. Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA

    • Genevieve Clark
    •  & Xiaodong Xu


  1. Search for Kyoung-Duck Park in:

  2. Search for Tao Jiang in:

  3. Search for Genevieve Clark in:

  4. Search for Xiaodong Xu in:

  5. Search for Markus B. Raschke in:


M.B.R. and K.-D.P. conceived the experiment. K.-D.P. performed the measurements and the FDTD simulations. K.-D.P. and M.B.R. designed the samples, and G.C. and X.X. prepared the samples. K.-D.P. and M.B.R. analysed the data, and all authors discussed the results. K.-D.P. and M.B.R. wrote the manuscript with contributions from all authors. M.B.R. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Markus B. Raschke.

Electronic supplementary material

About this article

Publication history




Issue Date


Further reading