Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrating viruses into soil food web biogeochemistry

Abstract

The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inclusion of viruses in the soil microbial food web.
Fig. 2: Physicochemical conditions of soils.
Fig. 3: Viral–host interactions in soils.

Similar content being viewed by others

References

  1. Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Environ. Sci. Health 5, 7–13 (2018).

    Google Scholar 

  2. Baer, S. G. & Birgé, H. E. in Managing Soil Health for Sustainable Agriculture Volume 1: Fundamentals (ed. Reicosky, D.) 17–38 (Burleigh Dodds Science Publishing, 2018).

  3. Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tiedje, J. M. et al. Microbes and climate change: a research prospectus for the future. mBio 13, e0080022 (2022).

    Article  PubMed  Google Scholar 

  5. Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Microbiol. 8, 779–790 (2010).

    Article  CAS  Google Scholar 

  6. Yang, L. et al. Soil microbial respiration adapts to higher and longer warming experiments at the global scale. Environ. Res. Lett. 18, 034044 (2023).

    Article  Google Scholar 

  7. Coleman, D. C. & Wall, D. H. in Soil Microbiology, Ecology and Biochemistry (ed. Paul, E. A.) 111–149 (Academic, 2015).

  8. Coleman, D. C. The microbial loop concept as used in terrestrial soil ecology studies. Microb. Ecol. 28, 245–250 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Meier, F. A., Scherrer, S. & Honegger, R. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol. J. Linn. Soc. 76, 259–268 (2008).

    Article  Google Scholar 

  10. Suman, J. et al. Microbiome as a key player in sustainable agriculture and human health. Front. Soil Sci. 2, 821589 (2022).

    Article  Google Scholar 

  11. Maitra, S. et al. Bioinoculants—natural biological resources for sustainable plant production. Microorganisms 10, 51 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, S. et al. Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes. Sci. Total Environ. 846, 157517 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Braga, L. P. P. et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8, 52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dahl, M. B. et al. Long-term warming-induced trophic downgrading in the soil microbial food web. Soil Biol. Biochem. 181, 109044 (2023).

    Article  CAS  Google Scholar 

  15. Emerson, J. B. Soil viruses: a new hope. mSystems 4, e00120-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).

    Article  CAS  Google Scholar 

  17. Wieczynski, D. J. et al. Viral infections likely mediate microbial controls on ecosystem responses to global warming. FEMS Microbiol. Ecol. 99, 1–11 (2023).

    Article  CAS  Google Scholar 

  18. Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Martin, C., Teigell-Perez, N., Lyles, M., Valladares, B. & Griffin, D. W. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions. Res. Microbiol. 164, 17–21 (2013).

    Article  PubMed  Google Scholar 

  21. Roy, K. et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 11, 1494 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hillary, L. S., Adriaenssens, E. M., Jones, D. L. & McDonald, J. E. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Commun. 2, 34 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu, R. et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun. Biol. 4, 992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lefeuvre, P. et al. Evolution and ecology of plant viruses. Nat. Microbiol. 17, 632–644 (2019).

    Article  CAS  Google Scholar 

  25. Wang, X. et al. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37, 1513–1520 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, S. et al. Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proc. Natl Acad. Sci. USA 118, e2105124118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma, R. S., Mohmmed, A. & Babu, C. R. Diversity among rhizobiophages from rhizospheres of legumes inhabiting three ecogeographical regions of India. Soil Biol. Biochem. 34, 965–973 (2002).

    Article  CAS  Google Scholar 

  30. Albright, M. B. N. et al. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME Commun. 2, 24 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pomeroy, L. R. The ocean’s food web, a changing paradigm. BioScience 24, 499–504 (1974).

    Article  Google Scholar 

  32. Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Correa, A. M. S. et al. Revisiting the rules of life for viruses of microorganisms. Nat. Microbiol. Rev. 19, 501–513 (2021).

    Article  CAS  Google Scholar 

  34. Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Díaz-Muñoz, S. L. Viral coinfection is shaped by host ecology and virus–virus interactions across diverse microbial taxa and environments. Virus Evol. 3, vex011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Emerson, J. B. in Encyclopedia of Virology (eds Bamford, D. H. & Zuckerman, M.) 621–626 (Elsevier, 2021).

  37. Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000).

    Article  Google Scholar 

  38. Sandaa, R.-A. et al. Viral control of bacterial biodiversity—evidence from a nutrient-enriched marine mesocosm experiment. Environ. Microbiol. 11, 2585–2597 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Allen, A. et al. The virally encoded killer proteins from Ustilago maydis. Fungal Biol. Rev. 26, 166–173 (2013).

    Article  Google Scholar 

  41. Ghabrial, S. A., Caston, J. R., Jiang, D., Nibert, M. L. & Suzuki, N. 50-plus years of fungal viruses. Virology 479480, 356–368 (2015).

    Article  PubMed  Google Scholar 

  42. Gilbert, C. & Cordaux, R. Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr. Opin. Virol. 25, 16–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Touchon, M., Sousa, J. A. M. D. & Rocha, E. P. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Virol. 38, 66–73 (2017).

    CAS  Google Scholar 

  44. Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).

    Article  Google Scholar 

  45. Gautam, R. L., Singh, S., Kumari, S., Gupta, A. & Naraian, R. in Mycodegradation of Lignocelluloses (ed. Naraian, R.) 1–22 (Springer International Publishing, 2019).

  46. Myers, J. M. & James, T. Y. Mycoviruses. Curr. Biol. 32, R150–R155 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Bärlocher, F. & Boddy, L. Aquatic fungal ecology—how does it differ from terrestrial? Fungal Ecol. 19, 5–13 (2016).

    Article  Google Scholar 

  48. Brown, J. M. et al. Single cell genomics reveals viruses consumed by marine protists. Front. Microbiol. 11, 524828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. DeLong, J. P., Etten, J. L. V., Al-Ameeli, Z., Agarkova, I. V. & Dunigan, D. D. The consumption of viruses returns energy to food chains. Proc. Natl Acad. Sci. USA 120, e2215000120 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Godon, J.-J. et al. Bacterial consumption of T4 phages. Microorganisms 9, 1852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, R. et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes. mBio 12, e0259521 (2021).

    Article  PubMed  Google Scholar 

  52. Wang, G. et al. Characterization and environmental applications of soil biofilms: a review. Environ. Chem. Lett. 22, 1989–2011 (2024).

    Article  CAS  Google Scholar 

  53. Santos-Medellín, C., Blazewicz, S. J., Pett-Ridge, J., Firestone, M. K. & Emerson, J. B. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat. Ecol. Evol. 7, 1809–1822 (2023).

    Article  PubMed  Google Scholar 

  54. Fowler, A. C. & Winstanley, H. F. Microbial dormancy and boom-and-bust population dynamics under starvation stress. Theor. Popul. Biol. 120, 114–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  56. Franklin, S. M. et al. The unexplored role of preferential flow in soil carbon dynamics. Soil Biol. Biochem. 161, 108398 (2021).

    Article  CAS  Google Scholar 

  57. Yang, P. & van Elsas, J. D. Mechanisms and ecological implications of the movement of bacteria in soil. Appl. Soil Ecol. 129, 112–120 (2018).

    Article  CAS  Google Scholar 

  58. Kimura, M., Jia, Z.-J., Nakayama, N. & Asakawa, S. Ecology of viruses in soils: past, present and future perspectives. Soil Sci. Plant Nutr. 54, 1–32 (2008).

    Article  Google Scholar 

  59. MacFarlane, S. A. & Robinson, D. J. in Microbe-Vector Interactions in Vector-Borne Diseases (eds Gillespie, S. H., Smith, G. L. & Osbourn, A.) 263–286 (Cambridge Univ. Press, 2001).

  60. Infante-Rodríguez, D. A. et al. Earthworm mediated dispersal of baculovirus occlusion bodies: experimental evidence from a model system. Biol. Control 100, 18–24 (2016).

    Article  Google Scholar 

  61. Pagenkemper, S. K. et al. The effect of earthworm activity on soil bioporosity—investigated with X-ray computed tomography and endoscopy. Soil Tillage Res. 146, 79–88 (2015).

    Article  Google Scholar 

  62. You, X. et al. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. ISME J. 16, 1275–1283 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Thoulouze, M.-I. & Alcover, A. Can viruses form biofilms? Trends Microbiol. 19, 257–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Lance, J. C. & Gerba, C. P. Virus movement in soil during saturated and unsaturated flow. Appl. Environ. Microbiol. 47, 335–337 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).

    Article  PubMed  Google Scholar 

  66. Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Kletzin, A. in Archaea: Evolution, Physiology, and Molecular Biology (eds Garrett, R. A. & Klenk, H.-P.) 261–274 (Blackwell, 2006).

  68. Wang, H. et al. Distinct distribution of archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Front. Microbiol. 11, 576661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kakouridis, A. et al. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. New Phytol. 242, 1661–1675 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125, 171–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Lu, X., Taylor, A. E., Myrold, D. D. & Neufeld, J. D. Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Sci. Soc. Am. J. 84, 287–302 (2020).

    Article  CAS  Google Scholar 

  72. Lee, S., Sieradzki, E. T., Nicol, G. W. & Hazard, C.Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification. ISME J. 17, 309–314 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Voigt, E., Rall, B. C., Chatzinotas, A., Brose, U. & Rosenbaum, B. Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ 4, e12194 (2021).

    Article  Google Scholar 

  75. Wegener, G., Kellermann, M. Y. & Elvert, M. Tracking activity and function of microorganisms by stable isotope probing of membrane lipids. Curr. Opin. Biotechnol. 41, 43–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Singer, D. et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Gilbert, D., Mitchell, E., Amblard, C., Bourdier, G. & Francez, A.-J. Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozoologica 42, 99–104 (2003).

    Google Scholar 

  79. Schulz, F., Abergel, C. & Woyke, T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat. Rev. Microbiol. 20, 721–736 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Kirchman, D. L. in Processes in Microbial Ecology (ed. Kirchman, D. L.) 154–173 (Oxford Univ. Press, 2018).

  81. Geisen, S., Amacker, N. & Jousset, A. in Encyclopedia of Soils in the Environment (ed. Hillel, D.) 336–347 (Elsevier, 2023).

  82. Geisen, S., Lara, E., Mitchell, E. A. D., Völcker, E. & Krashevska, V. Soil protist life matters! Soil Org. 92, 189–196 (2020).

    Google Scholar 

  83. Sommers, P., Chatterjee, A., Varsani, A. & Trubl, G. Integrating viral metagenomics into an ecological framework. Annu. Rev. Virol. 29, 133–158 (2021).

    Article  Google Scholar 

  84. Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479480, 2–25 (2015).

    Article  PubMed  Google Scholar 

  85. Nasir, A., Forterre, P., Kim, K. M. & Caetano-Anollés, G. The distribution and impact of viral lineages in domains of life. Front. Microbiol. 5, 194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lønborg, C., Middelboe, M. & Brussaard, C. P. D. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116, 231–240 (2013).

    Article  Google Scholar 

  87. Orgiazzi, A. & Panagos, P. Soil biodiversity and soil erosion: it is time to get married. Glob. Ecol. Biogeogr. 27, 1155–1167 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

C.C. was supported by a research grant (36223) from Villum Fonden and by the Novo Nordisk Foundation (NNF21OC0072586) in the call ‘Conferences, Symposia and Workshops 2021–2’. C.L. received funding from the Independent Research Fund Denmark (grant number 1127-00033B). K.M.-J. acknowledges the Dutch Research Council for funding the Veni project VI.Veni.202.086. The work of G.T. was supported by a Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development grant (21-LW-060) and by LLNL’s US Department of Energy, Office of Biological and Environmental Research Genomic Science Program “Microbes Persist” Scientific Focus Area (award SCW1632). Work at LLNL was conducted under the auspices of the US Department of Energy under contract DE-AC52-07NA27344. T.Z. was supported by a scholarship from the China Scholarship Council and University of Groningen scholarship programme. C.L.E. was funded by the Novo Nordisk Foundation (grant number NNF19SA0059360). R.S. and Z.B. were supported by the Novo Nordisk foundation (grant number NNF20OC0065183).

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived of the idea and wrote the first draft of the manuscript. C.C., C.L. and K.M.-J. provided the calculations. C.L., B.A., L.A., Z.B., F.B.C., T.C., C.L.E., J.B.E., L.H., R.B.K., V.L., K.M.-J., T.N., S.S., G.T., A.w.K., R.W., R.A.W., A.W., T.Z. and R.S. read and corrected the manuscript. A.w.K. provided the figures.

Corresponding author

Correspondence to Cátia Carreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Vincent Jassey, Jose Balcazar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables

Supplementary Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreira, C., Lønborg, C., Acharya, B. et al. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 9, 1918–1928 (2024). https://doi.org/10.1038/s41564-024-01767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01767-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology