Abstract
The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Environ. Sci. Health 5, 7–13 (2018).
Baer, S. G. & Birgé, H. E. in Managing Soil Health for Sustainable Agriculture Volume 1: Fundamentals (ed. Reicosky, D.) 17–38 (Burleigh Dodds Science Publishing, 2018).
Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).
Tiedje, J. M. et al. Microbes and climate change: a research prospectus for the future. mBio 13, e0080022 (2022).
Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Microbiol. 8, 779–790 (2010).
Yang, L. et al. Soil microbial respiration adapts to higher and longer warming experiments at the global scale. Environ. Res. Lett. 18, 034044 (2023).
Coleman, D. C. & Wall, D. H. in Soil Microbiology, Ecology and Biochemistry (ed. Paul, E. A.) 111–149 (Academic, 2015).
Coleman, D. C. The microbial loop concept as used in terrestrial soil ecology studies. Microb. Ecol. 28, 245–250 (1994).
Meier, F. A., Scherrer, S. & Honegger, R. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol. J. Linn. Soc. 76, 259–268 (2008).
Suman, J. et al. Microbiome as a key player in sustainable agriculture and human health. Front. Soil Sci. 2, 821589 (2022).
Maitra, S. et al. Bioinoculants—natural biological resources for sustainable plant production. Microorganisms 10, 51 (2021).
Wang, S. et al. Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes. Sci. Total Environ. 846, 157517 (2022).
Braga, L. P. P. et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8, 52 (2020).
Dahl, M. B. et al. Long-term warming-induced trophic downgrading in the soil microbial food web. Soil Biol. Biochem. 181, 109044 (2023).
Emerson, J. B. Soil viruses: a new hope. mSystems 4, e00120-19 (2019).
Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).
Wieczynski, D. J. et al. Viral infections likely mediate microbial controls on ecosystem responses to global warming. FEMS Microbiol. Ecol. 99, 1–11 (2023).
Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).
Gonzalez-Martin, C., Teigell-Perez, N., Lyles, M., Valladares, B. & Griffin, D. W. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions. Res. Microbiol. 164, 17–21 (2013).
Roy, K. et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 11, 1494 (2020).
Hillary, L. S., Adriaenssens, E. M., Jones, D. L. & McDonald, J. E. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Commun. 2, 34 (2022).
Wu, R. et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun. Biol. 4, 992 (2021).
Lefeuvre, P. et al. Evolution and ecology of plant viruses. Nat. Microbiol. 17, 632–644 (2019).
Wang, X. et al. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37, 1513–1520 (2019).
Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019).
Lee, S. et al. Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proc. Natl Acad. Sci. USA 118, e2105124118 (2021).
Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).
Sharma, R. S., Mohmmed, A. & Babu, C. R. Diversity among rhizobiophages from rhizospheres of legumes inhabiting three ecogeographical regions of India. Soil Biol. Biochem. 34, 965–973 (2002).
Albright, M. B. N. et al. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME Commun. 2, 24 (2022).
Pomeroy, L. R. The ocean’s food web, a changing paradigm. BioScience 24, 499–504 (1974).
Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).
Correa, A. M. S. et al. Revisiting the rules of life for viruses of microorganisms. Nat. Microbiol. Rev. 19, 501–513 (2021).
Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).
Díaz-Muñoz, S. L. Viral coinfection is shaped by host ecology and virus–virus interactions across diverse microbial taxa and environments. Virus Evol. 3, vex011 (2017).
Emerson, J. B. in Encyclopedia of Virology (eds Bamford, D. H. & Zuckerman, M.) 621–626 (Elsevier, 2021).
Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000).
Sandaa, R.-A. et al. Viral control of bacterial biodiversity—evidence from a nutrient-enriched marine mesocosm experiment. Environ. Microbiol. 11, 2585–2597 (2009).
Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108 (2011).
Allen, A. et al. The virally encoded killer proteins from Ustilago maydis. Fungal Biol. Rev. 26, 166–173 (2013).
Ghabrial, S. A., Caston, J. R., Jiang, D., Nibert, M. L. & Suzuki, N. 50-plus years of fungal viruses. Virology 479–480, 356–368 (2015).
Gilbert, C. & Cordaux, R. Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr. Opin. Virol. 25, 16–22 (2017).
Touchon, M., Sousa, J. A. M. D. & Rocha, E. P. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Virol. 38, 66–73 (2017).
Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).
Gautam, R. L., Singh, S., Kumari, S., Gupta, A. & Naraian, R. in Mycodegradation of Lignocelluloses (ed. Naraian, R.) 1–22 (Springer International Publishing, 2019).
Myers, J. M. & James, T. Y. Mycoviruses. Curr. Biol. 32, R150–R155 (2022).
Bärlocher, F. & Boddy, L. Aquatic fungal ecology—how does it differ from terrestrial? Fungal Ecol. 19, 5–13 (2016).
Brown, J. M. et al. Single cell genomics reveals viruses consumed by marine protists. Front. Microbiol. 11, 524828 (2020).
DeLong, J. P., Etten, J. L. V., Al-Ameeli, Z., Agarkova, I. V. & Dunigan, D. D. The consumption of viruses returns energy to food chains. Proc. Natl Acad. Sci. USA 120, e2215000120 (2023).
Godon, J.-J. et al. Bacterial consumption of T4 phages. Microorganisms 9, 1852 (2021).
Wu, R. et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes. mBio 12, e0259521 (2021).
Wang, G. et al. Characterization and environmental applications of soil biofilms: a review. Environ. Chem. Lett. 22, 1989–2011 (2024).
Santos-Medellín, C., Blazewicz, S. J., Pett-Ridge, J., Firestone, M. K. & Emerson, J. B. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat. Ecol. Evol. 7, 1809–1822 (2023).
Fowler, A. C. & Winstanley, H. F. Microbial dormancy and boom-and-bust population dynamics under starvation stress. Theor. Popul. Biol. 120, 114–120 (2018).
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Franklin, S. M. et al. The unexplored role of preferential flow in soil carbon dynamics. Soil Biol. Biochem. 161, 108398 (2021).
Yang, P. & van Elsas, J. D. Mechanisms and ecological implications of the movement of bacteria in soil. Appl. Soil Ecol. 129, 112–120 (2018).
Kimura, M., Jia, Z.-J., Nakayama, N. & Asakawa, S. Ecology of viruses in soils: past, present and future perspectives. Soil Sci. Plant Nutr. 54, 1–32 (2008).
MacFarlane, S. A. & Robinson, D. J. in Microbe-Vector Interactions in Vector-Borne Diseases (eds Gillespie, S. H., Smith, G. L. & Osbourn, A.) 263–286 (Cambridge Univ. Press, 2001).
Infante-Rodríguez, D. A. et al. Earthworm mediated dispersal of baculovirus occlusion bodies: experimental evidence from a model system. Biol. Control 100, 18–24 (2016).
Pagenkemper, S. K. et al. The effect of earthworm activity on soil bioporosity—investigated with X-ray computed tomography and endoscopy. Soil Tillage Res. 146, 79–88 (2015).
You, X. et al. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. ISME J. 16, 1275–1283 (2022).
Thoulouze, M.-I. & Alcover, A. Can viruses form biofilms? Trends Microbiol. 19, 257–262 (2011).
Lance, J. C. & Gerba, C. P. Virus movement in soil during saturated and unsaturated flow. Appl. Environ. Microbiol. 47, 335–337 (1984).
Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).
Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).
Kletzin, A. in Archaea: Evolution, Physiology, and Molecular Biology (eds Garrett, R. A. & Klenk, H.-P.) 261–274 (Blackwell, 2006).
Wang, H. et al. Distinct distribution of archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Front. Microbiol. 11, 576661 (2020).
Kakouridis, A. et al. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. New Phytol. 242, 1661–1675 (2024).
Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125, 171–189 (2008).
Lu, X., Taylor, A. E., Myrold, D. D. & Neufeld, J. D. Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Sci. Soc. Am. J. 84, 287–302 (2020).
Lee, S., Sieradzki, E. T., Nicol, G. W. & Hazard, C.Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification. ISME J. 17, 309–314 (2023).
Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).
Voigt, E., Rall, B. C., Chatzinotas, A., Brose, U. & Rosenbaum, B. Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ 4, e12194 (2021).
Wegener, G., Kellermann, M. Y. & Elvert, M. Tracking activity and function of microorganisms by stable isotope probing of membrane lipids. Curr. Opin. Biotechnol. 41, 43–52 (2016).
Singer, D. et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262 (2021).
Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019).
Gilbert, D., Mitchell, E., Amblard, C., Bourdier, G. & Francez, A.-J. Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozoologica 42, 99–104 (2003).
Schulz, F., Abergel, C. & Woyke, T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat. Rev. Microbiol. 20, 721–736 (2022).
Kirchman, D. L. in Processes in Microbial Ecology (ed. Kirchman, D. L.) 154–173 (Oxford Univ. Press, 2018).
Geisen, S., Amacker, N. & Jousset, A. in Encyclopedia of Soils in the Environment (ed. Hillel, D.) 336–347 (Elsevier, 2023).
Geisen, S., Lara, E., Mitchell, E. A. D., Völcker, E. & Krashevska, V. Soil protist life matters! Soil Org. 92, 189–196 (2020).
Sommers, P., Chatterjee, A., Varsani, A. & Trubl, G. Integrating viral metagenomics into an ecological framework. Annu. Rev. Virol. 29, 133–158 (2021).
Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480, 2–25 (2015).
Nasir, A., Forterre, P., Kim, K. M. & Caetano-Anollés, G. The distribution and impact of viral lineages in domains of life. Front. Microbiol. 5, 194 (2014).
Lønborg, C., Middelboe, M. & Brussaard, C. P. D. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116, 231–240 (2013).
Orgiazzi, A. & Panagos, P. Soil biodiversity and soil erosion: it is time to get married. Glob. Ecol. Biogeogr. 27, 1155–1167 (2018).
Acknowledgements
C.C. was supported by a research grant (36223) from Villum Fonden and by the Novo Nordisk Foundation (NNF21OC0072586) in the call ‘Conferences, Symposia and Workshops 2021–2’. C.L. received funding from the Independent Research Fund Denmark (grant number 1127-00033B). K.M.-J. acknowledges the Dutch Research Council for funding the Veni project VI.Veni.202.086. The work of G.T. was supported by a Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development grant (21-LW-060) and by LLNL’s US Department of Energy, Office of Biological and Environmental Research Genomic Science Program “Microbes Persist” Scientific Focus Area (award SCW1632). Work at LLNL was conducted under the auspices of the US Department of Energy under contract DE-AC52-07NA27344. T.Z. was supported by a scholarship from the China Scholarship Council and University of Groningen scholarship programme. C.L.E. was funded by the Novo Nordisk Foundation (grant number NNF19SA0059360). R.S. and Z.B. were supported by the Novo Nordisk foundation (grant number NNF20OC0065183).
Author information
Authors and Affiliations
Contributions
C.C. conceived of the idea and wrote the first draft of the manuscript. C.C., C.L. and K.M.-J. provided the calculations. C.L., B.A., L.A., Z.B., F.B.C., T.C., C.L.E., J.B.E., L.H., R.B.K., V.L., K.M.-J., T.N., S.S., G.T., A.w.K., R.W., R.A.W., A.W., T.Z. and R.S. read and corrected the manuscript. A.w.K. provided the figures.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Microbiology thanks Vincent Jassey, Jose Balcazar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Tables
Supplementary Tables 1–6.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Carreira, C., Lønborg, C., Acharya, B. et al. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 9, 1918–1928 (2024). https://doi.org/10.1038/s41564-024-01767-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41564-024-01767-x