Abstract
Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth’s climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life. Mass, electron and energy balance provide quantitative constraints on their flow within metabolic networks, organisms and ecosystems, shaping how each responds to its environment. The mechanisms underlying these flows, such as enzyme–substrate interactions, often involve encounter and handling stages that are represented by equations similar to those for cells and resources, or predators and prey. We propose that these formal similarities reflect shared principles and discuss how their investigation through experiments and models may contribute to a common language for studying microbial metabolism across scales.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).
López-Urrutia, Á., San Martin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168–13173 (2004).
West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
Lotka, A. J. Elements of Physical Biology (Williams & Wilkins, 1925).
Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).
Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006).
Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).
Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).
Knoop, H. et al. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput. Biol. 9, e1003081 (2013).
Van de Waal, D. B. et al. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 5, 1438–1450 (2011).
Riley, G. A. Factors controlling phytoplankton populations on Georges Bank. J. Mar. Res. 6, 54–73 (1946).
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).
Brown, J. H. & Maurer, B. A. Macroecology: the division of food and space among species on continents. Science 243, 1145–1150 (1989).
Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).
Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann. Rev. Mar. Sci. 3, 197–225 (2011).
Ewald, J. et al. Trends in mathematical modeling of host–pathogen interactions. Cell. Mol. Life Sci. 77, 467–480 (2020).
Handel, A., La Gruta, N. L. & Thomas, P. G. Simulation modelling for immunologists. Nat. Rev. Immunol. 20, 186–195 (2020).
Heinken, A., Basile, A., Hertel, J., Thinnes, C. & Thiele, I. Genome-scale metabolic modeling of the human microbiome in the era of personalized medicine. Ann. Rev. Microbiol. 75, 199–222 (2021).
Silva, L. C. R. & Lambers, H. Soil–plant–atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil 461, 5–27 (2021).
Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the microbiome. Nat. Microbiol. 4, 1253–1267 (2019).
Maarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B. & Bruggeman, F. J. Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnol. J. 8, 997–1008 (2013).
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002).
Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).
Redfield, A. C. in James Johnstone Memorial 176–192 (Univ. Press of Liverpool, 1934).
Rittman, B. E. & McCarty, P. Environmental Biotechnology: Principles and Applications (McGraw Hill, 2001).
Vallino, J. J., Hopkinson, C. S. & Hobbie, J. E. Modeling bacterial utilization of dissolved organic matter: optimization replaces Monod growth kinetics. Limnol. Oceanogr. 41, 1591–1609 (1996).
Geider, R. J. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).
Fell, D. Understanding the Control of Metabolism (Portland Press, 1997).
O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).
Heinrich, R. & Schuster, S. The Regulation of Cellular Systems (Springer, 1996).
Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).
Holzhütter, H.-G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922 (2004).
Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007).
Machado, D., Tramontano, M., Andrejev, S. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).
Bernstein, D. B., Sulheim, S., Almaas, E. & Segrè, D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol. 22, 64 (2021).
Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).
Feist, A. M. & Palsson, B. O. The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010).
Simensen, V. et al. Experimental determination of Escherichia coli biomass composition for constraint-based metabolic modeling. PLoS ONE 17, e0262450 (2022).
Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Thermodynamics-based metabolic flux analysis. Biophys. J. 92, 1792–1805 (2007).
Beard, D. A., Liang, S.-d & Qian, H. Energy balance for analysis of complex metabolic networks. Biophys. J. 83, 79–86 (2002).
Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).
Tilman, D. Resource Competition and Community Structure (MPB-17) Vol. 17 (Princeton Univ. Press, 1982).
Sarkar, D. et al. Elucidation of trophic interactions in an unusual single-cell nitrogen-fixing symbiosis using metabolic modeling. PLoS Comput. Biol. 17, e1008983 (2021).
Schindler, D. W. et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl Acad. Sci. USA 105, 11254–11258 (2008).
Inomura, K., Bragg, J. & Follows, M. J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 11, 166–175 (2017).
Resendis-Antonio, O., Reed, J. L., Encarnación, S., Collado-Vides, J. & Palsson, B. Ø.Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput. Biol. 3, e192 (2007).
Rhee, G.-Y. & Gotham, I. J. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26, 635–648 (1981).
Finkel, Z. V. et al. Phylogenetic diversity in the macromolecular composition of microalgae. PLoS ONE 11, e0155977 (2016).
Phillips, K. N., Godwin, C. M. & Cotner, J. B. The effects of nutrient imbalances and temperature on the biomass stoichiometry of freshwater bacteria. Front. Microbiol. 8, 1692 (2017).
Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).
Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 (2007).
Mahadevan, R., Edwards, J. S. & Doyle, F. J. 3rd Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340 (2002).
Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, 2006).
Segel, L. A. & Slemrod, M. The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989).
Dukovski, I. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082 (2021).
Salimi, F., Zhuang, K. & Mahadevan, R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J. 5, 726–738 (2010).
Casey, J. R. et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Sci. Adv. 8, eabl4930 (2022).
Régimbeau, A. et al. Contribution of genome-scale metabolic modelling to niche theory. Ecol. Lett. 25, 1352–1364 (2022).
Régimbeau, A. et al. Towards modeling genome-scale knowledge in the global ocean. Preprint at bioRxiv https://doi.org/10.1101/2023.11.23.568447 (2023).
Kiørboe, T. A Mechanistic Approach to Plankton Ecology (Princeton Univ. Press, 2008).
Michaelis, L. & Menten, M. I. Die kinetik der invirtinwirkung. Biochem. Z. 49, 333–369 (1913).
Monod, J. The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949).
Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).
Real, L. A. The kinetics of functional response. Am. Nat. 111, 289–300 (1977).
McNickle, G. G. & Brown, J. S. When Michaelis and Menten met Holling: towards a mechanistic theory of plant nutrient foraging behaviour. AoB Plants 6, plu066 (2014).
Gavis, J. Munk and Riley revisited: nutrient diffusion transport and rates of phytoplankton growth. J. Mar. Res. 34, 161–179 (1976).
Cornish-Bowden, A. Fundamentals of Enzyme Kinetics 4th edn (Wiley-Blackwell, 2012).
Han, B.-P. Photosynthesis–irradiance response at physiological level: a mechanistic model. J. Theor. Biol. 213, 121–127 (2001).
Liu, Y. Overview of some theoretical approaches for derivation of the Monod equation. Appl. Microbiol. Biotechnol. 73, 1241–1250 (2007).
Stefan, M. I. & Le Novère, N. Cooperative binding. PLoS Comput. Biol. 9, e1003106 (2013).
Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 (1997).
Hill, A. V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, iv–vii (1910).
Holling, C. S. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 98, 5–86 (2012).
Kalinkat, G., Rall, B. C., Uiterwaal, S. F. & Uszko, W. Empirical evidence of type III functional responses and why it remains rare. Front. Ecol. Evol. 11, 1033818 (2023).
Armstrong McKay, D. I., Cornell, S. E., Richardson, K. & Rockström, J. Resolving ecological feedbacks on the ocean carbon sink in Earth system models. Earth Syst. Dyn. 12, 797–818 (2021).
Moore, J. K., Doney, S. C. & Lindsay, K.Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycle 18, GB4028 (2004).
Wu, Z. et al. Modeling photosynthesis and exudation in subtropical oceans. Glob. Biogeochem. Cycle 35, e2021GB006941 (2021).
Geider, R. J., MacIntyre, H. L. & Kana, T. M. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148, 187–200 (1997).
Lin, H. et al. The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).
Westermark, S. & Steuer, R. Toward multiscale models of cyanobacterial growth: a modular approach. Front. Bioeng. Biotechnol. 4, 95 (2016).
Bruggeman, J. & Bolding, K. A general framework for aquatic biogeochemical models. Environ. Model. Softw. 61, 249–265 (2014).
Agmon, E. et al. Vivarium: an interface and engine for integrative multiscale modeling in computational biology. Bioinformatics 38, 1972–1979 (2022).
Zavřel, T. et al. Quantitative insights into the cyanobacterial cell economy. eLife 8, e42508 (2019).
Machado, D. & Herrgård, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10, e1003580 (2014).
Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).
Reznik, E. et al. Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity. Cell Rep. 20, 2666–2677 (2017).
Kümmel, A., Panke, S. & Heinemann, M. Putative regulatory sites unraveled by network‐embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2, 2006.0034 (2006).
Domenzain, I. et al. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat. Commun. 13, 3766 (2022).
Meiler, S. et al. Constraining uncertainties of diazotroph biogeography from nifH gene abundance. Limnol. Oceanogr. 67, 816–829 (2022).
Zehr, J. P. & Riemann, L. Quantification of gene copy numbers is valuable in marine microbial ecology: a comment to Meiler et al. (2022). Limnol. Oceanogr. 68, 1406–1412 (2023).
Meiler, S., Britten, G. L., Dutkiewicz, S., Moisander, P. H. & Follows, M. J. Challenges and opportunities in connecting gene count observations with ocean biogeochemical models: reply to Zehr and Riemann (2023). Limnol. Oceanogr. 68, 1413–1416 (2023).
Segre, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).
Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).
Zhao, Q., Stettner, A. I., Reznik, E., Paschalidis, I. C. & Segrè, D. Mapping the landscape of metabolic goals of a cell. Genome Biol. 17, 109 (2016).
Harcombe, W. R., Delaney, N. F., Leiby, N., Klitgord, N. & Marx, C. J. The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS Comput. Biol. 9, e1003091 (2013).
Boon, E. et al. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol. Rev. 38, 90–118 (2014).
Morris, J. J., Lenski, R. E. & Zinser, E. R.The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).
Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).
Zomorrodi, A. R. & Segrè, D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat. Commun. 8, 1563 (2017).
Kleidon, A., Malhi, Y. & Cox, P. M. Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B Biol. Sci. 365, 1297–1302 (2010).
Vallino, J. J. Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Phil. Trans. R. Soc. B Biol. Sci. 365, 1417–1427 (2010).
Goldenfeld, N. & Woese, C. Life is physics: evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys. 2, 375–399 (2011).
Barve, A. & Wagner, A. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature 500, 203–206 (2013).
Yizhak, K., Tuller, T., Papp, B. & Ruppin, E. Metabolic modeling of endosymbiont genome reduction on a temporal scale. Mol. Syst. Biol. 7, 479 (2011).
Handorf, T., Ebenhöh, O. & Heinrich, R. Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61, 498–512 (2005).
Raymond, J. & Segre, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).
Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134.e9 (2017).
Goldford, J. E., Hartman, H., Marsland, R. & Segrè, D. Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism. Nat. Ecol. Evol. 3, 1715–1724 (2019).
Xavier, J. C. et al. The metabolic network of the last bacterial common ancestor. Commun. Biol. 4, 413 (2021).
Chu, X. Y. et al. Plausibility of early life in a relatively wide temperature range: clues from simulated metabolic network expansion.Life (Basel) 11, 738 (2021).
Kim, H., Smith, H. B., Mathis, C., Raymond, J. & Walker, S. I. Universal scaling across biochemical networks on Earth. Sci. Adv. 5, eaau0149 (2019).
Zoccarato, L., Sher, D., Miki, T., Segrè, D. & Grossart, H.-P. A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Commun. Biol. 5, 276 (2022).
De Vargas Roditi, L., Boyle, K. E. & Xavier, J. B. Multilevel selection analysis of a microbial social trait. Mol. Syst. Biol. 9, 684 (2013).
Damore, J. A. & Gore, J. Understanding microbial cooperation. J. Theor. Biol. 299, 31–41 (2012).
Harrington, K. I. & Sanchez, A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun. Integr. Biol. 7, e28230 (2014).
Dundore-Arias, J. P., Michalska-Smith, M., Millican, M. & Kinkel, L. L. More than the sum of its parts: unlocking the power of network structure for understanding organization and function in microbiomes. Annu. Rev. Phytopathol. 61, 403–423 (2023).
West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).
Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).
Gardner, J. J. & Boyle, N. R.The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum. BMC Syst. Biol. 11, 4 (2017).
Epstein, J. M. Why model? J. Artif. Soc. Soc. Simul. 11, 12 (2008).
Liefer, J. D. et al. The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. Front. Microbiol. 10, 763 (2019).
Zaguri, M., Kandel, S., Rinehart, S. A., Torsekar, V. R. & Hawlena, D. Protein quantification in ecological studies: a literature review and empirical comparisons of standard methodologies. Methods Ecol. Evol. 12, 1240–1251 (2021).
Omta, A. W. et al. Quantifying nutrient throughput and DOM production by algae in continuous culture. J. Theor. Biol. 494, 110214 (2020).
Çakır, T. et al. Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains. Biotechnol. Progr. 23, 320–326 (2007).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).
Fiksen, O., Follows, M. & Aksnes, D. L. Trait based models of nutrient uptake in microbes extend the michaelis menten framework. Limnol. Oceanogr. 58, 193–202 (2013).
Grossowicz, M. et al. Prochlorococcus in the lab and in silico: the importance of representing exudation. Limnol. Oceanogr. 62, 818–835 (2017).
Omta, A. W. et al. Extracting phytoplankton physiological traits from batch and chemostat culture data. Limnol. Oceanogr. Methods 15, 453–466 (2017).
Acknowledgements
We thank R. Braakman, J. Casey, S. Ben Tabou de Leon and O. Weissberg for critical reading of the manuscript. The joint work of the research groups of D. Sher, D. Segrè and M.J.F. was supported by the Gordon and Betty Moore Foundation (grant number GBMF #3778 to M.J.F.), Human Frontier Science Program (grant number RGP0020/2016 to D. Sher and D. Segrè), United States–Israel Binational Science Foundation (grant number 2010183 to D. Sher and M.J.F.), Israel Science Foundation (grant number 1786/20 to D. Sher) and National Science Foundation/United States–Israel Binational Science Foundation (NSFOCE-BSF 1635070 and NSF-BSF 2246707 to D. Segrè and D. Sher). M.J.F. is also grateful for support from the Simons Foundation (CBIOMES; grant number 549931 to M.J.F.). D. Segrè was also supported by the National Science Foundation Center for Chemical Currencies of a Microbial Planet (C-CoMP publication #047), National Institutes of Health (National Institute on Aging (award number UH2AG064704) and National Cancer Institute (grant number R21CA279630)) and US Department of Energy, Office of Science, Office of Biological and Environmental Research through the Microbial Community Analysis and Functional Evaluation in Soils (m-CAFEs) Science Focus Area Program under contract number DE-AC02-05CH11231 to the Lawrence Berkeley National Laboratory.
Author information
Authors and Affiliations
Contributions
All of the authors contributed equally to all aspects of this article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Microbiology thanks T. Thingstad and Ralf Steuer for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sher, D., Segrè, D. & Follows, M.J. Quantitative principles of microbial metabolism shared across scales. Nat Microbiol 9, 1940–1953 (2024). https://doi.org/10.1038/s41564-024-01764-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41564-024-01764-0