Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmentally dependent interactions shape patterns in gene content across natural microbiomes

Abstract

Sequencing surveys of microbial communities in hosts, oceans and soils have revealed ubiquitous patterns linking community composition to environmental conditions. While metabolic capabilities restrict the environments suitable for growth, the influence of ecological interactions on patterns observed in natural microbiomes remains uncertain. Here we use denitrification as a model system to demonstrate how metagenomic patterns in soil microbiomes can emerge from pH-dependent interactions. In an analysis of a global soil sequencing survey, we find that the abundances of two genotypes trade off with pH; nar gene abundances increase while nap abundances decrease with declining pH. We then show that in acidic conditions strains possessing nar fail to grow in isolation but are enriched in the community due to an ecological interaction with nap genotypes. Our study provides a road map for dissecting how associations between environmental variables and gene abundances arise from environmentally modulated community interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: pH is associated with covariation in denitrification pathway composition in the global topsoil microbiome.
Fig. 2: Enrichment cultures reproduce patterns in denitrification gene content in the topsoil microbiome.
Fig. 3: Individual traits do not explain the outcome of acidic enrichments.
Fig. 4: Nitrite toxicity impacts denitrification activity of isolates at low pH.
Fig. 5: Co-culture alleviates nitrite toxicity under acidic conditions.
Fig. 6: Nar+ and Nap+ phenotypes are conserved across diverse taxa.

Similar content being viewed by others

Data availability

Data associated with this manuscript are publicly available at https://doi.org/10.17605/OSF.IO/N4J6F and by request. Raw sequence reads for soil enrichment experiments are deposited under National Center for Biotechnology Information BioProject ID PRJNA976277, and raw sequence reads for co-culture experiments are deposited under National Center for Biotechnology Information BioProject ID PRJNA1109838. Bacterial isolates are available by request. Gene abundance tables and environmental variables for the global topsoil microbiome dataset were provided by Bahram et al.4. The SILVA rRNA database (refs. 82,83,84; https://www.arb-silva.de) was used for taxonomic classification.

Code availability

Code associated with this manuscript is publicly available at https://doi.org/10.17605/OSF.IO/N4J6F and by request.

References

  1. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Song, W. et al. Functional traits resolve mechanisms governing the assembly and distribution of nitrogen-cycling microbial communities in the global ocean. MBio 13, e03832–21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang, C.-y et al. Soil ph is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann. Microbiol. 69, 1461–1473 (2019).

    Article  CAS  Google Scholar 

  4. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Malik, A. A., Thomson, B. C., Whiteley, A. S., Bailey, M. & Griffiths, R. I. Bacterial physiological adaptations to contrasting edaphic conditions identified using landscape scale metagenomics. MBio 8, e00799–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sofi, M. H. et al. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 63, 632–644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zinöcker, M. K. & Lindseth, I. A. The western diet–microbiome-host interaction and its role in metabolic disease. Nutrients 10, 365 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 1–17 (2017).

    Article  Google Scholar 

  9. Baas-Becking, L. G. M. Geobiologie of Inleiding Tot de Milieukunde (Van Stockkum & Zoon, 1934).

  10. Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573 (2010).

    Article  PubMed  Google Scholar 

  11. Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    Article  PubMed  Google Scholar 

  12. Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Pacheco, A. R. & Segrè, D. A multidimensional perspective on microbial interactions. FEMS Microbiol. Lett. 366, fnz125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gopalakrishnappa, C., Li, Z. & Kuehn, S. Environmental modulators of algae–bacteria interactions at scale. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.534036 (2023).

  16. Pearl Mizrahi, S., Goyal, A. & Gore, J. Community interactions drive the evolution of antibiotic tolerance in bacteria. Proc. Natl Acad. Sci. USA 120, e2209043119 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hsu, R. H. et al. Microbial interaction network inference in microfluidic droplets. Cell Syst. 9, 229–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sherr, E. B. & Sherr, B. F. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81, 293–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. de la Cruz Barron, M. et al. Shifts from cooperative to individual-based predation defense determine microbial predator–prey dynamics. ISME J. (2023).

  20. Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gamble, T. N., Betlach, M. R. & Tiedje, J. M. Numerically dominant denitrifying bacteria from world soils 1. Appl. Environ. Microbiol. 33, 926–939 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seitzinger, S. et al. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064–2090 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, H., Chandran, K. & Stensel, D. Microbial ecology of denitrification in biological wastewater treatment. Water Res. 64, 237–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Irrazábal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell 54, 309–320 (2014).

    Article  PubMed  Google Scholar 

  26. Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodionov, D. A., Dubchak, I. L., Arkin, A. P., Alm, E. J. & Gelfand, M. S. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput. Biol. 1, e55 (2005).

  28. Shapleigh, J. P. The denitrifying prokaryotes. In The Prokaryotes (eds. Rosenberg, E. et al.) 769–792 (Springer, 2006).

  29. Heylen, K. et al. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl. Environ. Microbiol. 72, 2637–2643 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lycus, P. et al. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 11, 2219–2232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gowda, K., Ping, D., Mani, M. & Kuehn, S. Genomic structure predicts metabolite dynamics in microbial communities. Cell 185, 530–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Uhlmann, J. A generalized matrix inverse that is consistent with respect to diagonal transformations. SIAM J. Matrix Anal. Appl. https://doi.org/10.1137/17M113890X (2018).

  33. Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Šimek, M. & Cooper, J. E. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 53, 345–354 (2002).

    Article  Google Scholar 

  35. Lilja, E. E. & Johnson, D. R. Segregating metabolic processes into different microbial cells accelerates the consumption of inhibitory substrates. ISME J. 10, 1568–1578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tiedje, J. M., Sexstone, A. J., Myrold, D. D. & Robinson, J. A. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek 48, 569–583 (1983).

    Article  Google Scholar 

  37. Magdoff, F. & Bartlett, R. Soil pH buffering revisited. Soil Sci. Soc. Am. J. 49, 145–148 (1985).

    Article  Google Scholar 

  38. Nelson, P. N. & Su, N. Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils. Soil Res. 48, 201–207 (2010).

    Article  Google Scholar 

  39. Bache, B. The role of calcium in buffering soils. Plant Cell Environ. 7, 391–395 (1984).

    Article  CAS  Google Scholar 

  40. Kreitler, C. W. & Jones, D. C. Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texasa. Groundwater 13, 53–62 (1975).

    Article  Google Scholar 

  41. Dowdell, R. J. & Cannell, R. Q. Effect of ploughing and direct drilling on soil nitrate content. Eur. J. Soil Sci. 26, 10.1111/j.1365-2389.1975.tb01929.x (1975).

  42. Uritskiy, G. V., Diruggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 1–13 (2018).

    Article  Google Scholar 

  43. Bollag, J.-M. & Henninger, N. M. Effects of nitrite toxicity on soil bacteria under aerobic and anaerobic conditions. Soil Biol. Biochem. 10, 377–381 (1978).

    Article  CAS  Google Scholar 

  44. Tarr, H. The action of nitrites on bacteria. J. Fish. Board Can. 5, 265–275 (1941).

    Article  CAS  Google Scholar 

  45. Bancroft, K., Grant, I. F. & Alexander, M. Toxicity of NO2: effect of nitrite on microbial activity in an acid soil. Appl. Environ. Microbiol. 38, 940–944 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Durvasula, K. et al. Effect of periplasmic nitrate reductase on diauxic lag of Paracoccus pantotrophus. Biotechnol. Prog. 25, 973–979 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Richardson, D. J. & Ferguson, S. J. The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Arch. Microbiol. 157, 535–537 (1992).

    Article  CAS  Google Scholar 

  48. Wang, H., Tseng, C. P. & Gunsalus, R. P. The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J. Bacteriol. 181, 5303–5308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Potter, L. C., Millington, P., Griffiths, L., Thomas, G. H. & Cole, J. A. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem. J. 344, 77–84 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article  Google Scholar 

  51. Abraham, Z. H., Lowe, D. J. & Smith, B. E. Purification and characterization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp. xylosoxidans (N.C.I.M.B. 11015): evidence for the presence of both type 1 and type 2 copper centres. Biochem. J. 295, 587–593 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masuko, M., Iwasaki, H., Sakurai, T., Suzuki, S. & Nakahara, A. Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. a novel copper protein. J. Biochem. 96, 447–454 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. Iwasaki, H. & Matsubara, T. A nitrite reductase from Achromobacter cycloclastes. J. Biochem. 71, 645–652 (1972).

    CAS  PubMed  Google Scholar 

  54. Liu, M. Y., Liu, M. C., Payne, W. J. & Legall, J. Properties and electron transfer specificity of copper proteins from the denitrifier ‘Achromobacter cycloclastes’. J. Bacteriol. 166, 604–608 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kakutani, T., Watanabe, H., Arima, K. & Beppu, T. Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. J. Biochem. 89, 453–461 (1981).

    Article  CAS  PubMed  Google Scholar 

  56. Kukimoto, M. et al. X-ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atoms in nitrite reduction. Biochemistry 33, 5246–5252 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Michalski, W. P. Molecular characterization of a copper-containing nitrite reductase from Rhodopseudomonas sphaeroides forma sp. denitrificans. Biochim. Biophys. Acta 828, 130–137 (1985).

    Article  CAS  Google Scholar 

  58. Sawada, E., Satoh, T. & Kitamura, H. Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium. Plant Cell Physiol. 19, 1339–1351 (1978).

    CAS  Google Scholar 

  59. Denariaz, G., Payne, W. J. & LeGall, J. The denitrifying nitrite reductase of Bacillus halodenitrificans. Biochim. Biophys. Acta Bioenerg. 1056, 225–232 (1991).

    Article  CAS  Google Scholar 

  60. Glockner, A. B., Jüngst, A. & Zumft, W. G. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Arch. Microbiol. 160, 18–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Timkovich, R., Dhesi, R., Martinkus, K. J., Robinson, M. K. & Rea, T. M. Isolation of Paracoccus denitrificans cytochrome cd1: comparative kinetics with other nitrite reductases. Arch. Biochem. Biophys. 215, 47–58 (1982).

    Article  CAS  PubMed  Google Scholar 

  62. Gordon, E. H. et al. Structure and kinetic properties of Paracoccus pantotrophus cytochrome cd1 nitrite reductase with the d1 heme active site ligand tyrosine 25 replaced by serine. J. Biol. Chem. 278, 11773–11781 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Besson, S., Carneiro, C., Moura, J. J., Moura, I. & Fauque, G. A cytochrome cd1-type nitrite reductase isolated from the marine denitrifier pseudomonas nautica 617: purification and characterization. Anaerobe 1, 219–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Sawhney, V. & Nicholas, D. J. Sulphide-linked nitrite reductase from Thiobacillus denitrificans with cytochrome oxidase activity: purification and properties. J. Gen. Microbiol. 106, 119–128 (1978).

    Article  CAS  Google Scholar 

  65. Stewart, V., Lu, Y. & Darwin, A. J. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. J. Bacteriol. 184, 1314–1323 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Alst, N. E., Sherrill, L. A., Iglewski, B. H. & Haidaris, C. G. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase. Can. J. Microbiol. 55, 1133–1144 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ikeda, E. et al. Physiological roles of two dissimilatory nitrate reductases in the deep-sea denitrifier Pseudomonas sp. strain MT-1. Biosci. Biotechnol. Biochem. 73, 896–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Bell, L. C., Richardson, D. J. & Ferguson, S. J. Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha. The periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett. 265, 85–87 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Warnecke-Eberz, U. & Friedrich, B. Three nitrate reductase activities in Alcaligenes eutrophus. Arch. Microbiol. 159, 405–409 (1993).

    Article  CAS  Google Scholar 

  70. Rigoulet, M., Mourier, A., Galinier, A., Casteilla, L. & Devin, A. Electron competition process in respiratory chain: regulatory mechanisms and physiological functions. Biochim. Biophys. Acta Bioenerg. 1797, 671–677 (2010).

    Article  CAS  Google Scholar 

  71. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Krueger, F. Trim Galore. GitHub https://github.com/FelixKrueger/TrimGalore (2023).

  74. Bushnell, B., Rood, J. & Singer, E. BBmerge – accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).

  75. Cole, J. R. et al. The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33, D294–D296 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Wu, Y.-W., Simmons, B. A. & Singer, S. W. Maxbin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015, 1–15 (2015).

    Google Scholar 

  80. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meyer, F. et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 1–8 (2008).

    Article  Google Scholar 

  82. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).

    Article  PubMed  Google Scholar 

  84. Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Waki, T., Murayama, K., Kawato, Y. & Ichikawa, K. Transient characteristics of Paracoccus denitrificans with changes between aerobic and anaerobic conditions. J. Ferment. Technol. 58, 243–249 (1980).

  86. Liu, P.-H., Zhan, G., Svoronos, S. A. & Koopman, B. Diauxic lag from changing electron acceptors in activated sludge treatment. Water Res. 32, 3452–3460 (1998).

    Article  CAS  Google Scholar 

  87. Liu, P.-H., Svoronos, S. A. & Koopman, B. Experimental and modeling study of diauxic lag of Pseudomonas denitrificans switching from oxic to anoxic conditions. Biotechnol. Bioeng. 60, 649–655 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Gouw, M., Bozic, R., Koopman, B. & Svoronos, S. A. Effect of nitrate exposure history on the oxygen/nitrate diauxic growth of Pseudomonas denitrificans. Water Res. 35, 2794–2798 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Lisbon, K., McKean, M., Shekar, S., Svoronos, S. A. & Koopman, B. Effect of do on oxic/anoxic diauxic lag of Pseudomonas denitrificans. J. Environ. Eng. 128, 391–394 (2002).

    Article  CAS  Google Scholar 

  90. Casasús, A. I., Hamilton, R. K., Svoronos, S. A. & Koopman, B. A simple model for diauxic growth of denitrifying bacteria. Water Res. 39, 1914–1920 (2005).

    Article  PubMed  Google Scholar 

  91. 16S Metagenomic Sequencing Library Preparation. Tech. Rep. (Illumina, 2013).

  92. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Callahan, B. J. et al. Dada2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with qiime 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).

    Article  Google Scholar 

  95. McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. Elife 8, e46923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ku, H. H. et al. Notes on the use of propagation of error formulas. J. Res. Natl Bur. Stand. 70 (1966).

  97. Taylor, J. R. An Introduction to Error Analysis 2nd edn (University Science Books, 1997).

  98. Soil Survey Staff, USDA. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. In Agriculture Handbook No. 436 (USDA, 1999).

  99. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge L. M. de Jesús Astacio and M. Yousef for collecting soils, R. A. Oliveira for help with colony counting technique, M. Bahram for previously published global topsoil microbiome data and K. Husain for useful discussions. Soil sampling done in the CAF was, in part, a contribution from the LTAR network. LTAR is supported by the United States Department of Agriculture. This work was supported by the National Science Foundation Division of Emerging Frontiers EF 2025293 (S.K.) and EF 2025521 (M.M.), as well as the National Science Foundation Graduate Research Fellowship Program under grant number DGE 1746045 (M.C-W). S.K. acknowledges the Center for the Physics of Evolving Systems at the University of Chicago, National Institute of General Medical Sciences R01GM151538, and support from the National Science Foundation through the Center for Living Systems (grant number 2317138). K.G. acknowledges a James S. McDonnell Foundation Postdoctoral Fellowship Award 220020499. M.T. acknowledges support from NSF grant PHY-2310746. M.C-W. acknowledges a Fannie and John Hertz Fellowship Award. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.C., K.G., M.M. and S.K. conceptualized the research. K.C., K.G. and S.K. designed the experiments. K.C., K.G., K.K.L. and M.C.-W. performed the experiments. K.G. performed statistical analysis of the topsoil microbiome data and performed and analysed soil enrichment experiments. M.C.-W. performed mortality rate experiments, advised by K.C. and S.K. Z.L. performed co-evolution analysis, advised by K.G. and S.K. K.C. performed all other experiments and analyses, advised by K.G. and S.K. K.C. performed consumer-resource model fits, predictions and simulations, adapting code written by K.G. K.K.L. sampled topsoils and performed the soil microcosm experiments. M.T. performed the analysis of sequencing data for the soil microcosm experiment in Supplementary Fig. 3. The topsoil microcosm experiment was, in part, a contribution from the LTAR network. LTAR is supported by the United States Department of Agriculture. K.C., K.G., Z.L., K.K.L., M.T. and S.K. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Karna Gowda or Seppe Kuehn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Nicholas Bouskill, Eoin Brodie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Principal components resulting from the uiSVD decomposition of the global topsoil microbiome.

Bars show the loadings of each gene in the six principal components (PCs) resulting from the uiSVD decomposition of denitrification reductase (narG, napA, nirS, nirK, norB, nosZ) relative abundances from the global topsoil microbiome.

Extended Data Fig. 2 C/N ratio correlates negatively with denitrification pathway magnitude.

Unit-invariant singular value decomposition (uiSVD) was used to decompose denitrification reductase (narG, napA, nirS, nirK, norB, nosZ) relative abundances from the global topsoil microbiome into contributions due to pathway magnitude and composition (Fig. 1a–d). Pathway magnitude (d) most strongly correlated with C/N ratio (ρ = − 0.59, p < 10−6 via one-tailed randomization test; Fig. 1f).

Extended Data Fig. 3 Enrichment across a broader range of pH values.

Additional enrichments were performed at pH 5.0, 5.5, 6.0, and 7.3 and the endpoint cultures were shotgun sequenced to infer taxonomic composition and genotypes. (A) Endpoint community compositions of the enrichments inferred via 16S miTAGs are shown. Taxa with Nar+ genotypes are indicated in shades of blue, while taxa that possess Nap and not Nar are indicated in shades of red. Compositions are shown at the level of taxonomic order, and taxa present at a level of less than 1% are omitted. (B) Median denitrification reductase genotypes inferred via annotation of metagenome assembled genomes are shown.

Extended Data Fig. 4 pH 7.3 monoculture data are explained by individual fitness effects.

(A)-(H) Consumer resource model (Supplementary Information Eq. S1) fit to monoculture metabolite data at pH 7.3. Dots indicate nitrate concentrations, stars indicate nitrite concentrations, solid lines show fits to nitrate dynamics, and dash-dot lines show fits to nitrite dynamics. All concentrations are averaged over biological replicates (n = 3). Panels (A, C, E, G) are fits to PD Nar+ data, while panels (B, D, F, H) are fits to RH Nap+ data. To infer nitrate and nitrite reduction rates independently fits were performed for a number of different initial conditions ([NO−3], [NO−2]). Panels (A) and (B) correspond to (1.75, 0), (C) and (D) to (0.875, 0), (E) and (F) to (0.4375, 1.3125), (G) and (H) to (0.875, 0.4375). All concentrations are reported in units of mM. (I) Co-culture relative abundance prediction based on monoculture phenotypes. RH Nap+ is predicted to approach a relative abundance of 1 for all initial conditions at pH 7.3. This is consistent with what was observed in enrichment experiments (Fig. 5f).

Extended Data Fig. 5 Co-culture enrichment biomass and metabolite dynamics.

Details of the PD Nar+ and RH Nap+ co-culture experiment shown in Fig. 5. (A) PD Nar+ relative abundance dynamics at pH 6.0 are shown. \({f}_{0,Na{r}^{+}}=0,0.03,0.5,0.97\) and 1 are highlighted. Due to small levels of cross-contamination between pure and mixed cultures, \({f}_{Na{r}^{+}}\) increases from 0 and decreases from 1. Although this was unintentional, it indicates that each of these strains is invasible by the other in this condition, providing more evidence that they coexist. (B) PD Nar+ relative abundance dynamics at pH 7.3 are shown. In panels A and B, data points are means of biological replicates (n = 4 for PD Nar+ relative abundance > = 0.5 at pH 6 and relative abundance < = 0.03 and = 1 in both pH conditions; n = 3 for all other conditions) of inferred relative abundances (Methods) and errorbars are calculated as described in the Fig. 5 caption and Methods. (C) Endpoint biomass dynamics, measured via absorbance at 600 nm, are shown for each cycle at pH 6.0. The \({f}_{0,Na{r}^{+}}=0\) condition produces much less biomass than the other conditions, as expected. (D) Endpoint biomass dynamics are shown for each cycle at pH 7.3. (E, G) NO−3 and NO−2 dynamics are measured using a Griess assay (117) and shown at pH 6.0. Aside from the \({f}_{0,Na{r}^{+}}=0\) condition, for which biomass is very low (panel C), increasing \({f}_{Na{r}^{+}}\) (panel A) corresponds to increasing nitrite accumulation. (F, H) Metabolite dynamics are shown at pH 7.3. Decreasing \({f}_{Na{r}^{+}}\) (B) corresponds to decreasing nitrite accumulation. Points and error bars in panels C-H show means and standard deviations over biological replicates (n = 4 for PD Nar+ relative abundance > = 0.5 at pH 6 and relative abundance < = 0.03 and = 1 in both pH conditions; n = 3 for all other conditions) in each condition.

Supplementary information

Supplementary Information

Supplementary Text Sections 1–5, Supplementary Figs. 1–9 and Supplementary Tables 1–4.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crocker, K., Lee, K.K., Chakraverti-Wuerthwein, M. et al. Environmentally dependent interactions shape patterns in gene content across natural microbiomes. Nat Microbiol 9, 2022–2037 (2024). https://doi.org/10.1038/s41564-024-01752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01752-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing